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1 Original Theory

This section is for the introduction of some concepts in nonlinear

continuum mechanics and thermoelastic theory.

1.1 Deformation Gradient

Suppose the displacement vector of a particle in the undeformed

state and the deformed state is x and X , and then there exists[1]

dx =
∂x

∂X
dX (1)

Thus there is a transformation from the undeformed state to

the deformed state. So we have the definition

Definition 1. The deformation gradient of a transforming mate-

rial is defined as

F =
∂x

∂X
(2)

This is like the ratio of length in the two states L/L0.

1.2 Left Cauchy-Green Deformation Gradient

We need to relate the stress tensor with the deformation tensor

in application. However, the deformation gradient might be not

symmetric while the stress is symmetric. Thus define a symmet-

ric tensor[1]

B = FF
T (3)

The product in the right hand side is the product of its matrix

representation.

1.3 Strain Energy Density Function

Every transformation of material will store a sort of energy, such

as the Young’s deformation energy density[2]

W =
1

2
Eε2 (4)

Where E is the Young’s modulus and ε is defined as ε = ∆L/L0,

just as the deformation gradient.

The same as above, there is a general version of energy

density[3]

W = W (F )

1.4 Stress-Strain Relation of Hyperelastic Mate-

rial

Just as what is renown in the Young’s energy density and stress,

consider the Lagrangian formulated as

L = K(F )−W (F ) (5)

Where the deformation gradient is regarded as the general coor-

dinates. Thus, considering the steady state which annihilates ki-

netic energy, we define the 1st Piola-Kirchhoff stress tensor as[4]

P =
d~F

d~a
= −

∂L

∂F
=

∂W (F )

∂F
(6)

Here, the 1st Piola-Kirchhoff stress tensor aims at the stress exert-

ing on the material relative to reference configuration (the origi-

nal state). And according to[1]

dAn = JdaF−T
·N (7)

We can generate the Cauchy stress tensor

σ =
d~F

d ~A
=

1

J

∂W

∂F
· F

T =
2

J
B ·

∂W

∂B
(8)

1.5 Invariants of Tensors

Definition 2. The invariants of a tensor[5] is defined as the co-

efficient of the characteristic polynomial of the tensor, i.e., the

coefficient of

p(λ) = det (A− λE) (9)

Theorem 1. If a function of tensors is invariant under the rota-

tion, which is called the material is isotropic, then the function

can be expressed as the main invariants of the tensor.

Usually, for a three dimensional tensor, we have

I1 = trB, I2 =
1

2

[

(trB)2 − tr(B)2
]

, J = detB (10)
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2 Application to Hyperelastic Model

2.1 Mooney-Rivlin Model

The Mooney-Rivlin Model[6] is the simplest instance of polyno-

mial hyperelastic model, which constructs the strain energy den-

sity as a polynomial of the three invariants of left Cauchy-Green

deformation gradient I1, I2 and J as

W =

n
∑

i,j=0

Cpq(Ī1 − 3)i(Ī2 − 3)j +

m
∑

k=1

Dk(J − 1)k (11)

When Mooney-Rivlin Model is the situation that there are no

other terms except for i = 0, j = 1; i = 1, j = 0; and k = 1.

However, we will use a simpler model for the rubber is usu-

ally incompressible and thus J = 1 will hold for every rubber

material. Thus, we write the energy density as

W = C1(I1 − 3) + C2(I2 − 3) +D (J − 1) (12)

The reason for these terms is based on the consideration of the

similarity between the energy density and Lagrangian of the sys-

tem. The energy density can be regarded as the Lagrangian pa-

rameterized with three parameter I1, I2 and J with each of them

possibly constrained by I1 − 3 = 0, I2 − 3 = 0 and J − 1 = 0.

Thus, according to the Analytical Mechanics, the Lagrangian of

the constrained system can be written as the sum of the product

of Lagrangian multiplier and the constraint. Hence the energy

density is written as above.

2.2 Calculation of Cauchy Stress Tensor

The calculation is displayed in following

σ =
2

J
B ·

∂W

∂B

=
1

J
B ·(C1

∂ tr(B)

∂B
+C2

∂[(trB)2− tr(B2)]

∂2B
+D

∂ detB

∂B
)

=
1

J
B · [C1E + C2(I1 −B) +DJB−1]

=
1

J
[C1B − C2(B ·B − I1B + I2E) + (D −

I2
J
)JE ]

=
1

J
(C1B − C2B

−1 + pJE )

(13)

Where the last equality is based on Cayley-Hamilton theorem[8].

And in the second step, the coefficient 2 is put into the material

coefficient.

For incompressible material like rubber, there is J = 1, thus

the result is

σ = C1B − C2B
−1 + pE (14)

3 Application to a Balloon

We now consider a balloon as a spherical incompressible hypere-

lastic rubber. Hence, the above analysis is suitable for the analysis

of a balloon.[9]

First, we write the deformation gradient of a spherical balloon

in the diagonal representation as

F =





ε 0 0
0 ε 0
0 0 ε−2



 (15)

Where ε = r/r0 is the stretch ratio. Thus, the left Cauchy-Green

deformation tensor becomes

B =





ε2 0 0
0 ε2 0
0 0 ε−4



 (16)

Hence, the Cauchy stress tensor will be

σ =





σ 0 0
0 σ 0
0 0 0



 = C1





ε2 0 0
0 ε2 0
0 0 ε−4



+ p





1 0 0
0 1 0
0 0 1



− C2





ε−2 0 0
0 ε−2 0
0 0 ε4



 (17)

Thus we will have

σ = C1(ε
2
− ε−4) + C2(ε

4
− ε−2) (18)

And according to

δp · πr2 = σ · 2πrd (19)

With the help of dr2 = d0r
2

0
, we get the pressure difference of

the inside and outside of the balloon

δp = 2C1

d0
r0

(ε−1
− ε−7)(1 +

C2

C1

ε2) (20)

And according to the statistics we now have, i.e., C1 = 3,

C2 = 0.3 and d0/r0 = 0.008, we plot the theoretical curve of

pressure difference Figure 1: Theoretical Curve
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If we consider the balloon as a sphere-like membrane instead

of a strictly spherical one, the stretches of the two directions will

not be equal. Instead, they will be proportional. Thus, we write

the deformation gradient of as

F =





ε 0 0
0 λε 0
0 0 λ−1ε−2



 (21)

Where ε = r/r0 is the stretch ratio. Thus, the left Cauchy-

Green deformation tensor becomes

B =





ε2 0 0
0 λ2ε2 0
0 0 λ−2ε−4



 (22)

Here, it can be manifestly seen that the stress of the two direc-

tion will not be equal, so we need to use different signs to denote

them. Usually, the direction of the two directions will be set as

the perpendicular to and along with the mouth of the balloon, and

due to the nonlinearity of the stress-strain relation, they are likely

not to be proportional. Hence, the Cauchy stress tensor will be

σ =





σ′ 0 0
0 σ 0
0 0 0



 = C1





ε2 0 0
0 λ2ε2 0
0 0 λ−2ε−4



+ p





1 0 0
0 1 0
0 0 1



− C2





ε2 0 0
0 λ−2ε−2 0
0 0 λ2ε4



 (23)

Thus we will have

σ = C1(λ
2ε2 − λ−2ε−4) + C2(λ

2ε4 − λ−2ε−2) (24)

And according to

δp · πr2 = σ · 2πrd (25)

With the help of dr2 = d0r
2

0
, we get the pressure difference of

the inside and outside of the balloon

δp = 2C1

d0
r0

(λ2ε−1
− λ−2ε−7)(1 +

C2

C1

ε2) (26)

We need to notice that the radius here should be the radius

of the largest cross-section circle which is perpendicular to the

direction of the stress σ.

According to the statistics we now have, i.e., C1 = 3, C2 =
0.3, r0 = 83mm and d0 = 0.1497mm, we plot the theoretical

curve of pressure difference

Figure 2: Theoretical Curve
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