
Theoretical Analysis of Magnus Lift

Zhang Chang-kai

March 14, 2016

Copyright Declaration

Theoretical Analysis of Halo by Zhang Chang-kai is licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License. cbna

1 Classical Theory

The classical theory is constructed on some strict and ideal

situations, and can lead to a basic analytical result although

may not be quite practical. However, we still need the re-

sult for analysis for more complex situations will make the

theoretical analysis unmeaningful.

The construction will be organized as follows: first, a ve-

locity distribution of the air along a rotating cylinder will be

calculated; second, an ideal steady flow across a static cylin-

der will be analyzed; Add this two parts together so that it

can be formed a superposed air flow; Calculate the pressure

difference caused by the flow and a lift can be gained.

1.1 Velocity Distribution

This section is to calculate the velocity distribution of the

air outside a spinning cylinder. Firstly, we have the Navier-

Stokes equation
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And consider the steady condition which annihilates the dy-

namic part
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And consider that the velocity has only the component of

direction ϕ, i.e., ~u = (0, u, 0), as well as the boundary con-

dition

~u(r = R) = ~ω

~u(r → ∞) = 0
(3)

Where ω is the angular velocity of the closest air layer that

is capable to superpose with the outer air stream, thus the

solution will be

~u =
~ωR2

r2
(4)

Which is the result of this section.

1.2 Steady Flow outside Cylinder

This section is to calculate the steady flow passing a static

cylinder. Here we need to use the stream line theory. First

introduce the stream function vector as

~ψ = ~∇× ~v (5)

Where ~ψ is the stream function vector and ~v is the velocity.

According to reference [1], the stream function of the

steady flow along the x-axis is

ψ = vy (6)

And the stream function of a doublet is

ψ = −vy
R2

r2
(7)

Thus, add this two parts up and the stream function of the

steady flow passing the cylinder will be gained

ψ = vy
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Hence the ϕ component of the velocity will be

u =
1

r
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Therefore the flow on the surface of the cylinder will be

u =
2v sinϕ

r
(10)

Or written under the vector representation

~u = 2
~r × ~v

r2
(11)

Which is the final conclusion of this section
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1.3 Classical Lift

This section is to calculate the theoretical classical lift of the

spinning and moving cylinder. First there is the superposed

velocity
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)

× ~r (12)

Thus the dynamic pressure will be
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Hence the pressure difference

δp = p(∞)− p(R)

= −2pR(~v × ~ω)z~εz · ~er −
1

2
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1

2
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Thus the theoretical Magnus force

Fµ = −

∫∫

δp dAµ (15)

Calculation will be as follows
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Hence the conclusion is

~F = 2πρR2h · ~v × ~ω (17)

2 Practical Theory

The above classical theory is a mathematically rigorous one,

and is also a simple and basic theory of Magnus effect. How-

ever, it is based on some assumptions such as that the bound-

ary layer is always laminar and that there will not be any air

separation, which is almost impossible in a practical situa-

tion. Thus, there must be some modifications on this classi-

cal theory.

Usually, the lift of any kind of airfoil can be written as

the product of the dynamic pressure, the effective airfoil area

and a constant, i.e.

F =
1

2
ρv2SC (18)

Thus, define the lift coefficient as

CL =
F

1

2
ρv2S

(19)

In the case of the cylinder, there will be F = 2πρR2hvω

and S = 2ab, and hence, theoretically

CL = 2πx (20)

Where

x =
ωR

v
(21)

is the dimensionless variable.

Nevertheless, experimentally

Therefore, the influence of the turbulence, air separation and

wingtip vortex can be much larger than expected. Thus, it is

very important to have a correction factor on the lift coeffi-

cient, i.e.

CL = 2πxη (22)

Where the correction factor η can represent the influence led

by turbulence, air separation, wingtip loss and other kind of

practical factors.
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