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1 Introduction

This is the notes of classical Thermodynamics. It is found
that some typical textbooks of thermodynamics will not
satisfy the logic of a content rigid theory. Thus, this
notes will largely focus on elaborating and axiomatizing
the classical Thermodynamics theory.

This document will comply the following logic. First,
we will illustrate the mathematical form of thermody-
namic states as well as the basic thermodynamic param-
eter as a complete set of commutative observable. Next,
we will introduce four classical thermodynamic state func-
tions, followed by the three thermodynamic theorems. Fi-
nally, several applications of the laws will be elucidated.

In this document, Greek letters represent abstract in-
dexes and Latin letters represent specific indexes.

2 Mathematical Formulation

2.1 Introduction

The description of Thermodynamics requires Functional
Analysis as mathematical foundations. However, a com-
plete introduction of the application of Functional Analy-
sis can be much too exhausting. Thus, we only elucidate
some necessary concepts and applications. More details
can be found in arbitrary books about Functional Analy-
sis.

2.2 Hilbert Space

First, we need the concept of inner product space

Definition. A complex vector space V is a inner product
space if it is defined a inner product map i : V × V → C
satisfying

(a) i(f, g + h) = i(f, g) + i(f, h)
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(b) i(f, cg) = ci(f, g)

(c) i(f, g) = i(g, f)

(d) i(f, f) ≥ 0 and i(f, f) = 0 ⇔ f = 0

Next, define the Hilbert space

Definition. The Hilbert space is a complete inner product
space.

The definition of complete can be found in Functional
Analysis.

In Quantum Mechanics, we use a special case of
Hilbert space — square-integrable function space L2(Rn)

whose inner product is defined as

⟨f |g⟩ =
∫
f̄g dnx (2.1)

The integral here is Lebesgue integral, and we have used
the Dirac notation to denote the inner product.

In our system of Thermodynamics theory, the thermo-
dynamics state is represented by a ray in Hilbert space.

2.3 Operators on Hilbert Space

Definition. An operator in Hilbert space is a map A :

D → H where D ⊂ H

Usually, the operator we use in Quantum Mechanics
is linear.

Definition. The adjoint operator A† of an operator A is
defined as

i(A†f, g) = i(f,Ag) (2.2)

A very important case of operator is the self-adjoint
operator

Definition. An operator A is self-adjoint if

A = A† (2.3)

In Quantum Mechanics, the observables are defined
as a rigorous self-adjoint operator.

The average value or mathematical expectation of an
operator at certain state is defined as

Definition. The expectation or average of an operator A
is defined as

Ā = ⟨f |A|g⟩ (2.4)

In our system of Thermodynamics theory, the ther-
modynamic parameters and observables of the system is
represented by the operators in Hilbert space.

2.4 Generating Hilbert Space

The pure theoretical part of Quantum Mechanics does not
value the generation of Hilbert space very much. However,
in Quantum Field Theory and many aspects of the appli-
cation of Quantum Mechanics, generating Hilbert space is
a crucial procedure. To do this, we need the complete set
of commutative observables

Definition. The complete set of commutative observables
is a set of commutative observables with their spectrum
can determine a unique state.

Thus, a system can be determined and labelled by the
spectrum of complete set of commutative observables.

3 Thermodynamic States

3.1 Microscopic States

Classical Thermodynamics concerns the macroscopic
state consisting of huge amount of microscopic states.
Thus, it is beneficial to first analyse microscopic states.
Since we deal with microscopic Physics, we need to in-
voke Quantum Mechanics. In Quantum Mechanics, states
are represented by the rays of Hilbert space. In Dirac no-
tation, this is represented by

|ω⟩

Hilbert space is a complete inner product space of
square-integrable function. Thus, we are allowed to in-
troduce the normalization condition

⟨ω|ω⟩ = 1 (3.1)

If there is a representation |x⟩, the state can be ex-
panded as a wave function

ω(x) = ⟨x|ω⟩ (3.2)

Define the density operator as

ρ̂ = |ω⟩⟨ω| (3.3)

Under certain eigenstates of complete set of commutative
observables |n⟩ we have the density matrix

ρmn = ⟨m|ρ̂|n⟩ (3.4)
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In the density operator formulation, the expectation of an
operator G can be calculated from

⟨Ĝ⟩ = tr(ρ̂Ĝ) (3.5)

The density operator formulation has been widely used in
statistical mechanics and is equivalent to the conventional
representation of microscopic states. Thus, in the subse-
quent content, microscopic states and parameters will be
written in the density operator formulation.

3.2 Macroscopic States

Orthodox Quantum Mechanics does not claim to step into
macroscopic area. However, in Quantum Mechanics, there
does exist the many-particle theory. Thus, the macroscopic
states we now consider is actually many-particle states de-
noted by

|ψ⟩

This state may contain a large number of microscopic de-
grees of freedom. However, if the system contains large
enough microscopic degrees of freedom, we are able to
use some mean value as macroscopic degrees of freedom.
Thus, this macroscopic state is determined through only
limited macroscopic parameters. Hence, we have the fol-
lowing definition

Definition. The thermodynamic macroscopic state is a ray
|ψ⟩ in macroscopic Hilbert space generated by macro-
scopic parameter operators.

The generation of macroscopic Hilbert space will
be discussed in the next section. From now on, unless
claimed, the state represents the macroscopic state.

Also, if we have a representation |ε⟩, we can construct
a wave function

ψ(ε) = ⟨ε|ψ⟩ (3.6)

For a microscopic state, the square of the wave func-
tion represents certain possibility distribution. However, a
macroscopic state contains a huge number of microscopic
states, and thus the square of the wave function represents
the ratio of microscopic states with certain parameters (e.g.
ε).

3.3 Hilbert Spaces of States

In Quantum Mechanics, we have a rigorous construction
of Hilbert space. And thus, the construction of the Hilbert

space seems just to construct a many-particle state. Never-
theless, things are not so easy. For instance, a microscopic
state ρ̂ usually have discrete energy spectrum, however, a
macroscopic state can have a continuous energy spectrum
due to the large amount of particles.

In this sense, the Hilbert space of macroscopic states
can be different from the that of many-particle states.
However, since any macroscopic system can be regarded
in essence as a many-particle state, all physical macro-
scopic states can be identical to the corresponding many-
particle states.

3.4 Equilibrium States

A macroscopic state can include a huge number of mi-
croscopic states, and thus different combination of micro-
scopic states can form disparate macroscopic states. How-
ever, there exists a special case that some macroscopic pa-
rameters of the disparate states are the same, which means
the system is uniform. This kind of uniformity corre-
sponds to equilibrium in Thermodynamics.

To define the equilibrium states, decompose the state
into

|ψ⟩ = |ψ1⟩|ψ2⟩ · · · |ψm⟩ (3.7)

where all the states in the right hand side is not able to de-
compose. It is crucial to notice that the number m might
not equal to the particle number in the state since there
might be entanglement inside the state. The state |ψi⟩ is
called the minimum divisible state. Therefore, the equilib-
rium is defined by

Definition. A state is equilibrated with respect to param-
eter x if all its minimum divisible states have the same
spectrum of the parameter.

The equilibrium plays an important role in first law
of Thermodynamics when identifying the energy and the
internal energy.

4 Thermodynamic Parameter

4.1 Interpretation

For macroscopic states, there are in total five independent
parameters to describe — pressure, volume, temperature,
entropy and particle number. In our system of Thermo-
dynamics theory, the states are rays in Hilbert space. By
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analogy, the macroscopic parameter should be interpreted
as operators.

The operators of microscopic and macroscopic states
are not in fact mathematically equivalent, since the Hilbert
spaces of them respectively are not equivalent although
closely linked. Thus, the microscopic operator will be
denoted by Ĝ with hat and macroscopic operator will be
denoted by Ĝ with wide hat. The only exception is the
density operator as well as the operator generated by the
density operator. They are able to exert on both Hilbert
spaces.

4.2 Heat, Work and Energy

The energy conservation law is one of the most rigid law
in Physics. So now we consider the formulation of energy
conservation law in Thermodynamics. First of all, we need
the definition of energy

Definition. The energy of a Thermodynamics state is de-
fined as

Ê |ψ⟩ = tr(ρ̂Ĥ)|ψ⟩ (4.1)

where |ψ⟩ is any state, ρ̂ is the density operator and Ĥ is
the Hamiltonian operator.

We want to know the alteration of the energy after
some time. So we define the thermodynamic process as

Definition. A thermodynamic process is a smooth curve
in phase space parametrized by proper time.

Now, we define the work and heat as

Definition. The work of a process is defined by

δŴ |ψ⟩ = tr(ρ̂ δĤ)|ψ⟩ (4.2)

where |ψ⟩ is any state and δ is the variation operator.

Definition. The heat of a process is defined by

δQ̂ |ψ⟩ = tr(Ĥδρ̂)|ψ⟩ (4.3)

where |ψ⟩ is any state.

From the definition can we easily conclude the energy
conservation law

Energy Conservation Law. The variation of energy is the
sum of the variation of work and heat, formulated by

δÊ = δŴ +δQ̂ (4.4)

Here we write a wide operator equation. The mean-
ing of the equivalence relation should be comprehended as
that the result after the two sides of equation act on any
state is equal.

4.3 Particle Number

Definition. The particle number operator n̂ is defined by

n̂|ψ⟩ = n|ψ⟩ (4.5)

where |ψ⟩ is any state and n is the total particle number
in this state.

From the definition we can see that all states are the
eigenstates of particle number operator. And the function
of this operator is to measure the particle number of the
state.

4.4 Entropy

Definition. The entropy operator Ŝ is defined as

Ŝ |ψ⟩ = −κ tr(ρ̂lnρ̂) |ψ⟩ (4.6)

where |ψ⟩ is any state and ρ̂ is the density operator corre-
sponds to the state.

There is a special case that ρ̂ is a diagonal operator
and all the diagonal elements satisfy

ρ̂i = Ω̂−1 (4.7)

where Ω̂ is the microscopic state number operator. We find
that there are in total Ω diagonal elements and thus the
trace operation becomes the summation of Ω equal quan-
tities, which makes equation (4.6) become

Ŝ |ψ⟩ = κ lnΩ̂ |ψ⟩ (4.8)

Thus, we see that the entropy correlates with the total mi-
croscopic state number.

4.5 Temperature

Definition. The temperature operator T̂ is defined by

δijκT̂ |ψ⟩ = ⟨χi
∂Ĥ
∂χj

⟩|ψ⟩ (4.9)

where |ψ⟩ is any state, κ is the Boltzmann constant, chii
is the independent variable in phase space and Ĥ is the
Hamiltonian.

This definition infers that the temperature is propor-
tional to the microscopic kinematic energy.
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4.6 Pressure

Definition. The pressure operator p̂ is defined as

p̂|ψ⟩ = n⟨p̂v̂⟩|ψ⟩ (4.10)

where |ψ is any state, n is the particle number of the sys-
tem, p is the momentum and v is the velocity of certain
direction.

If the spacetime background has a dimension of q,
equation (4.10) can also be written as

p̂ |ψ⟩ = n

q
⟨p̂µv̂µ⟩|ψ⟩ (4.11)

Considering that any state is the eigenstate of particle num-
ber operator, we have

p̂ |ψ⟩ = ⟨n̂p̂v̂⟩|ψ⟩ (4.12)

from which we can conclude that the pressure operator is
to generate the expectation of total momentum flow.

4.7 Volume

Definition. The volume operator V̂ is defined as

V̂ |ψ⟩ = V |ψ⟩ (4.13)

where |ψ⟩ is any state and V is the volume of the state.

It can be seen that the volume operator is to generate
the volume of a state.

The volume operator has a absolute distinction with
the previous operators. The previous operators all have
a clear microscopic significance which is the average of
some quantities. However, the volume operator does not.
This indicates that the volume is an absolute macroscopic
parameter.

5 Thermodynamic Function

5.1 Internal Energy

Definition. The internal energy Û is defined by

dÛ = T̂ dŜ − p̂ dV̂ +µdn̂ (5.1)

where d is the exterior differential operator and µ is the
chemical potential.

5.2 Enthalpy

Definition. The Enthalpy Ĥ is defined by

dĤ = T̂ dŜ + V̂ dp̂+µdn̂ (5.2)

Utilizing Legendre transformation, we can write an
equivalent formulation of enthalpy by internal energy

Ĥ = Û + p̂V̂ (5.3)

5.3 Helmholtz Free Energy

Definition. The Helmholtz free energy or free energy F̂

is defined by

dF̂ = − Ŝ dT̂ − p̂ dV̂ +µdn̂ (5.4)

Utilizing Legendre transformation, we can write an
equivalent formulation of enthalpy by internal energy

F̂ = Û − T̂ Ŝ (5.5)

5.4 Gibbs Free Energy (Free Enthalpy)

Definition. The Gibbs free energy or free enthalpy Ĝ is
defined by

dĜ = − Ŝ dT̂ + V̂ dp̂+µdn̂ (5.6)

Utilizing Legendre transformation, we can write an
equivalent formulation of enthalpy by internal energy

Ĝ = Û + p̂V̂ − T̂ Ŝ (5.7)

6 Thermodynamic Ensemble

6.1 Equilibrium State

Until now, we have not yet put forward any special require-
ments of any concepts in our system of Thermodynamics.
However, such a general system can hardly move forward
now. Thus, we need to add some constraints on the con-
cepts we have introduced for further analysis. Here, we
introduce the thermodynamic equilibrium

Definition. The state is thermodynamic equilibrated if

(a) it is equilibrated with respect to temperature
(b) it is equilibrated with respect to pressure
(c) it is equilibrated with respect to chemical potential

Our further deductions in thermodynamic ensemble
are all based on the equilibrium state.
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6.2 Energy Distribution Function

The distribution function we are going to illustrate needs
the following hypothesis

Hypothesis. The thermodynamic state has continuous en-
ergy spectrum.

Hence, we are able to decompose the state |ψ⟩
through energy spectrum

|ψ⟩ =
∫

dε |ε⟩⟨ε|ψ⟩ (6.1)

Thus, we are able to define a wave function with respect to
the energy

ψ(ε) = ⟨ε|ψ⟩ (6.2)

Now we are going to determine the formulation of the
wave function. Notice that we have two properties of the
states {

⟨ψ|ψ⟩ = 1

⟨ψ|ε̂|ψ⟩ = ε̄
(6.3)

Expand the above conditions with respect to the energy
spectrum and we get the constraints for the distribution
function as

∫
dε⟨ψ|ε⟩⟨ε|ψ⟩ =

∫
dεψ2(ε) = 1∫

dε⟨ψ|ε⟩⟨ε|ε̂|ε⟩⟨ε|ψ⟩ =
∫

dε εψ2(ε) = ε̄

(6.4)

The orthodox idea suggest us construct the energy dis-
tribution function as

ψ2(ε) = A exp{−Bε} (6.5)

where A and B are positive real numbers. With the help
of the above constraints, we can conclude

A = B = ε̄−1 (6.6)

Thus, the energy distribution function can be written as

ψ2(ε) =
1

ε̄
exp{−ε

ε̄
} (6.7)

6.3 Maxwell Speed Distribution

From the hypothesis of continuous energy spectrum, we
can infer that the thermodynamic state has continuous
speed spectrum. Thus, we have the wave function

ψ(v) = ⟨v|ψ⟩ (6.8)

Now, condition (6.3) gives
∫

dv⟨ψ|v⟩⟨v|ψ⟩ =
∫

dv ψ2(v) = 1∫
dv⟨ψ|v⟩⟨v|ε̂nrk |v⟩⟨v|ψ⟩ =

∫
dv εnrk ψ

2(v) = ε̄nrk

(6.9)
where

εnrk =
1

2
mv̂2 (6.10)

From (4.9) we can conclude that if the energy has the form
as (6.10), there is

ε̄nrk =
i

2
κT (6.11)

where i is the translation degrees of freedom and T is de-
fined by

T̂ |ψ⟩ ≡ T |ψ⟩ (6.12)

The same as what we do in the energy distribution func-
tion, write the speed distribution function as

ψ2(v) = A exp{−Bv2} (6.13)

With similar calculation A =
( m

2πκT

) i
2

B =
m

2κT

(6.14)

6.4 Gibbs Ensemble

The Gibbs ensemble suggests constructing the density op-
erator as

ρ̂ =
1

Z
exp{−βĤ} (6.15)

where β is a positive real number and Z is the partition
function defined as

Z = tr(exp{−βĤ}) (6.16)

Thus we can see that the partition function serves as the
normalization factor in Gibbs ensemble.

Now we are going to determine the the positive real
number β. Suppose the Hamiltonian of the state goes to
infinity at the boundary of the state. The normalization
condition requires ∫

ρ̂ dΓ = Î (6.17)

where Î is the identity operator and

dΓ =

q∧
i=1

dxi dpi (6.18)
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Integrate by parts for certain i and get∫
ρ̂χi dΓ

i +

∫
ρ̂χiβ

∂Ĥ
∂χi

dΓ = Î (6.19)

where dΓ i is the induced surface volume element. The
first term vanishes according to our assumption. Thus we
have∫

ρ̂χiβ
∂H
∂χi

dΓ = β⟨χi
∂Ĥ
∂χi

⟩ = βκT Î = Î (6.20)

Therefore, we have

β =
1

κT
(6.21)

which is the well-renowned thermodynamic beta.

7 Thermodynamic Theorem

7.1 First Law of Thermodynamics

In order to describe the first law of Thermodynamics, we
need preliminarily several concepts

Definition. A process is quasi-static if for any time τ the
state |ψ(τ)⟩ is an equilibrium state.

The quasi-static state plays an important role in the
first law of Thermodynamics. The quasi-static condition
indicates that we can regard every instant of the state in
the process as an equilibrium state, which validates Gibbs
ensemble in the whole process. Thus, we can introduce
the first law of Thermodynamics

First Law of Thermodynamics. For a quasi-static pro-
cess with the state being a Gibbs ensemble and only acted
by pressure-volume work, there is

dÛ = δQ̂ +d̄Ŵ (7.1)

Proof. Let’s first calculate the variation of entropy

δŜ |ψ⟩ = −κ tr[(ln ρ̂+ 1)δρ̂]|ψ⟩ (7.2)

Utilizing Gibbs ensemble (6.15)

δŜ |ψ⟩ = κ tr(βĤδρ̂)|ψ⟩+ (lnZ − 1) tr(δρ̂)|ψ⟩ (7.3)

The second term vanishes owing to

tr(ρ̂+ δρ̂) = tr(ρ̂) + tr(δρ̂) = tr(ρ̂) (7.4)

since the density operator still needs to satisfy normaliza-
tion condition even after the variation. Thus, we have

δŜ |ψ⟩ = κβ tr(Ĥδρ̂) =
δQ̂

T
(7.5)

Consequently
δQ̂ = T̂δŜ = T̂dŜ (7.6)

The last equality is due to that entropy in macroscopic sys-
tem is a coordinate and thus its variation will equal to its
exterior differential form.

Next, the pressure-volume work is easily seen to be-
come the variation of work

d̄Ŵ = − p̂ dV̂ (7.7)

Also, for the Gibbs ensemble in quasi-static process, the
particle number in each phase in the system will remain
invariant. Hence

dn̂ = 0 (7.8)

Therefore

dÛ = T̂dŜ − p̂ dV̂ +µdn̂ = δQ̂ +d̄Ŵ (7.9)

which finishes our proof.

7.2 Second Law of Thermodynamics

The second law of Thermodynamics has become the most
important but the most controversy law in Physics. It is im-
portant because the so-called “perpetual motion machine
of the second kind” is banned as a result of the second
law. It is controversy since it does not have a microscopic
meaning. Also, it is considered to have potential to de-
fine a direction for time arrow but face great difficulties
on account of the time reverse symmetry of microscopic
theories.

Therefore, we now give a version of the second law of
Thermodynamics. It is needed to first clarify that although
classical Thermodynamics regards the second law as a uni-
versal law, we still consider it in a microscopic view that
it is a law with strict conditions. Thus, we have the second
law of Thermodynamics

Second Law of Thermodynamics. The entropy of a state
with large enough particles being uniformly perturbed for
a long enough time in non-relativistic limit will not de-
crease

δŜ ⩾ 0 (7.10)
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Proof. First let’s calculate the change rate of entropy with
respect to time

dŜ

dt
|ψ⟩ = −κ

∑
r

tr(
dρ̂r
dt

ln ρ̂r)|ψ⟩ (7.11)

where we have considered

tr(
dρ̂

dt
) =

d

dt
tr(ρ̂) = 0 (7.12)

If the system is perturbed by Hamiltonian Ĥpt for large
enough time, we have the Fermi’s first order perturbation
of the transition rate

σrs =
2π

ℏ
|⟨r|Ĥpt|s⟩|2 (7.13)

Thus

dρ̂r
dt

=
∑
s

σrsρ̂s =
∑
s̸=r

σrsρ̂s + σrrρr (7.14)

Utilizing ∑
s

σrs =
∑
s̸=r

σrs + σrr = 0 (7.15)

We can write

dρ̂r
dt

=
∑
s ̸=r

σrs(ρ̂s − ρ̂r) (7.16)

Take this into (7.11) and we have

dŜ

dt
|ψ⟩ = −κ

∑
s ̸=r

tr(σrs ln ρ̂r)(ρ̂s − ρ̂r)|ψ⟩

=
1

2
κ
∑
s ̸=r

tr[σrs(ln ρ̂r − ln ρ̂s)(ρ̂r − ρ̂s)]|ψ⟩

(7.17)

The last equality is the result of the symmetry of matrix
σrs. We see from the result that the right hand side will be
equal or greater than zero. Thus

dŜ

dt
⩾ 0 (7.18)

Regard the entropy as a quantity and rewrite in variation
formulation

δŜ ⩾ 0 (7.19)

which finishes our proof.

Remarks. We can see here that there are at least four
strict conditions needed to validate the second law

(a) particle number is large enough
(b) each energy spectrum is uniformly perturbed
(c) perturbation time is long enough
(d) non-relativistic

Taken a theoretical view, these conditions are so strict that
it does not have any chance to become a universal law.
Nonetheless, these conditions can in fact be easily satis-
fied in the scale of our application. Also, we need to men-
tion that this is only one version of the second law. Thus,
we can not eliminate the possibility for proofs of stronger
theorems.

7.3 Third Law of Thermodynamics

Compared with the first and second law of Thermodynam-
ics, the third law of Thermodynamics seems not so well-
known, since largely speaking, it does not have very strong
application significance. Besides, it is vital to notice that
although one version of the law can be strictly proven,
there is another wide-spread version is not able to. Before
introducing the law, we need the following concept

Definition. A perfect crystal is a system satisfying

Hiδ
i
0 = 0 and Hiδ

i
j ̸= 0 for j > 0 (7.20)

where Hi is the Hamiltonian of the ith eigenstate.

Now we can introduce the third law of Thermody-
namics. The proven version is formulated as

Third Law of Thermodynamics. The entropy of a per-
fect crystal at 0K is zero.

Proof. The condition T = 0K yields

⟨χi
∂Ĥ
∂χj

⟩ = tr(ρ̂χi
∂Ĥ
∂χj

) = 0 (7.21)

because the only Hamiltonian element with zero value is
the ground state Hamiltonian. Thus, the above condition
is satisfied if and only if

ρ̂ = ρ̂0 (7.22)

where ρ̂0 is the ground state of the system. This indicates
that the temperature of a state being zero is equivalent to
the state being ground state. However, ground state is a
definite state with

tr(ρ̂ ln ρ̂) = 1 · ln 1 = 0 (7.23)

Hence
Ŝ |ψ⟩ = −κ tr(ρ̂lnρ̂) |ψ⟩ = 0 (7.24)

which finishes our proof.
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It is important to notice that this law cares only about
the perfect crystal and thus may fail when this condition is
not satisfied.

There is also another version of the third law

It is impossible to reach 0K in finite steps.

However, we have to say that this law has not yet been rig-
orously proven. More precisely, we need a condition that
is too strict to make the above statement a law.

8 Application

8.1 Temperature Scale

The thermodynamic temperature is defined through the
triple point of pure water. Specifically, define the temper-
ature of triple point of pure water as

Ttp = 273.16K

This definition of temperature is the thermodynamic tem-
perature scale.

8.2 Condensation Statistics

8.2.1 Maxwell Distribution

The Maxwell Distribution function is formulated as

ψ2(v) =
( m

2πκT

) i
2
exp{−1

2
βmv2} (8.1)

We have the two characteristic average. First is the root-
mean-square speed

vrms =
√
⟨v2⟩ =

√
iκT

m
(8.2)

Second is the average speed with three degrees of freedom

v̄ = ⟨v⟩ =
√

8κT

πm
(8.3)

8.2.2 Boltzmann Distribution

The Boltzmann distribution function is formulated as

ψ2(εp) = n0 exp{−βε} (8.4)

where εp is certain potential energy.

8.2.3 Fermi-Dirac Statistics

Fermi-Dirac statistics describes the condensation statistics
of Fermions. Suppose we have in total q energy level and
level i has degeneracy gi. Also, suppose we have equal
possibility for ni Fermions to stay at each configuration.
Due to the Pauli exclusion, the total number of configura-
tion is the product of choosing ni states in gi total states,
i.e.

Ω(n, g) =

q∏
i=0

gi!

ni!(gi − ni)!
(8.5)

Besides, we have two constraints

q∑
i=1

ni = n

q∑
i=1

niεi = E

(8.6)

where εi is the energy of the level i. Thus, construct the
Lagrange function as

L̃ = lnΩ + α(N −
q∑

i=0

ni) + β(E −
q∑

i=0

niεi) (8.7)

where tilde means it is not a Lagrangian but a Lagrange
function. Thus, we derive the equation of motion through
Lagrange equation

∂L̃
∂ni

= ln

(
gi − ni
ni

)
− α− βεi = 0 (8.8)

Thus, we calculate the distribution function of particles

ni =
gi

exp{α+ βϵi}+ 1
(8.9)

Take this expression back to (8.5) and perform the exterior
differential on lnΩ

dlnΩ =

q∑
i=0

ln

(
gi − ni
ni

)
dni =

q∑
i=0

(αi + βεi) dni

= α dN + β dE

(8.10)

Notice that the conditions we now consider satisfy the con-
ditions of first law of Thermodynamics. Thus, we identify
the energy as internal energy and get

dE = T dS + µdN (8.11)
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Hence we solve the constant α and β

β =
1

κT
, α = − µ

κT
(8.12)

Substitute these into (8.9) and get

ni =
gi

exp{(ϵi − µ)/κT}+ 1
(8.13)

This is the Fermi-Dirac statistics.

8.2.4 Einstein-Bose Statistics

Apart from fermions, we have also bosons. So, the
Einstein-Bose Statistics aims at describing the statistics of
Bosons. Unlike fermions, bosons does not have any exclu-
sion properties. Thus, there might be arbitrary number of
particles in one eigenstate. This means the configuration is
the product of choosing ni places for particles and gi − 1

places for the rest partitions from in total ni+gi−1 places,
i.e.

Ω(n, g) =

q∏
i=0

(ni + gi − 1)!

ni!(gi − 1)!
(8.14)

Through similar procedure, we can solve the particle dis-
tribution function

ni =
gi

exp{(ϵi − µ)/κT} − 1
(8.15)

This is the Einstein-Bose statistics.

8.3 Heat Capacity

Heat can in fact be influenced by several parameters. How-
ever, if we only care about the temperature and keep the
other parameters at a static point, heat can be a function of
temperature. Thus, we can define the heat capacity as

Definition. The heat capacity is defined by

Cχ =
∂Q

∂T

∣∣∣∣
χ

(8.16)

where χ consists of all parameters that can influence heat.

We have two special heat capacity

Definition. The isochoric heat capacity is defined as

Cu =
∂U

∂T
(8.17)

Definition. The isobaric heat capacity is defined as

Ch =
∂H

∂T
(8.18)

Also, we have the heat capacity in phase transition

Definition. The latent heat Λ is the heat during the phase
transition.

8.4 Equation of State

Previously, we only consider the state to be in the condi-
tion of equilibrium state and quasi-static process. Now, for
furthermore analysis, we need to specify the type of mat-
ter. For certain type of matter, we can have some equations
which it will satisfy. This is the equation of state for that
type of matter. We can see that the equation of state can
have an injection with the type of matter. Thus, we use the
equation of state to label the matter.

8.4.1 Ideal Gas

We first introduce the ideal gas as

Definition. The ideal gas is the gas satisfying

p̂V̂ = n̂RT̂ (8.19)

where R is a positive constant defined by

R = κNA (8.20)

Within NA is the Avogadro constant.

The ideal gas has a number of good properties. For
example, we are going to see that the internal energy of
ideal gas is irrelevant to the volume. Also, it is a relatively
good approximation of the real gas. These properties make
it the most widely used gas model.

8.4.2 Van der Waals Gas

Another gas model closer to the real gas is the Van de
Waals gas model as

Definition. The Van de Waals gas is the gas satisfying

˜̂p
˜̂
V = n̂RT̂ (8.21)

where ˜̂p is defined as

˜̂p = p̂+aν2V̂
−2

(8.22)

and ˜̂
V is defined as

˜̂
V = V̂− bν (8.23)

Within, a and b are constants.

Although the ideal gas has many good properties, the
simulation of some particular gases can fail. In fact, the
ideal gas can become more accurate when T → 0. How-
ever, this reduces it applicability. Thus, a modification of
the ideal gas model was put forward, which is the Van
de Waals model. This model can better describe gas at
room temperature, and hence more applicable in some sit-
uations.
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8.4.3 Maxwell Relation

Maxwell relation is a widely used relationship in Thermo-
dynamics, especially when the matter is specified and thus
equation of state can be inferred. However, in Mathemat-
ics, Maxwell relation is just a very simple interpretation of
the commutation relation of the second partial derivative

Definition. Maxwell relation is formulated as

d(dϕ) = 0 (8.24)

where d is the exterior differential operator and ϕ is a
scalar field.

Now we apply this equation to the enthalpy

d(dĤ ) = dT̂ dŜ +dV̂ dp̂

=
∂T̂

∂p̂
dp̂ ∧ dŜ +

∂V̂

∂Ŝ
dŜ ∧dp̂

=

(
∂T̂

∂p̂
− ∂V̂

∂Ŝ

)
dp̂ ∧dŜ = 0

(8.25)

Thus we have
∂T̂

∂p̂
− ∂V̂

∂Ŝ
= 0 (8.26)

If we have the equation of state, we have the following
result

∂Û

∂V̂
=

1

T̂

∂Ŝ

∂V̂
− p̂ =

1

T̂

∂T̂

∂p̂
− p̂ (8.27)

With similar derivation, we have also

∂Ĥ

∂p̂
=

1

T̂

∂V̂

∂T̂
+ V̂ (8.28)

And we can also have other relations from free energy and
free enthalpy. These relations return normal if there is no
equation of state and thus the first term vanishes. Now, if
we have an equation of state, the first term will have a non-
vanishing value. For example, the internal energy of Van
de Waals gas is relative to the volume. But, the good prop-
erties of ideal gas make its internal energy free of volume
since the equation of state annihilates the first term.

8.4.4 Clausius-Clapeyron Relation

The Clausius-Clapeyron relation describes the state during
phase transition. The Clausius-Clapeyron relation states

Clausius-Clapeyron Relation. The state under phase
transition satisfies

δΛ = T̂
∂p̂

∂T̂
d̄V̂ (8.29)

Through this relation, we can calculate the pressure-
temperature relation if the latent heat is known.

8.5 Thermodynamic Process of Gas

In this section, we care about some particular processes of
gas. It is essential to state ahead that all the processes we
consider here should satisfy the condition of first law of
Thermodynamics.

8.5.1 Isochoric Process

Definition. The isochoric process is defined as

δV̂ (τ) = 0 (8.30)

This leads to a basic relation as

d̄Û = δQ̂ (8.31)

This relation is important in defining the isochoric heat ca-
pacity and therefore important in calculating the internal
energy.

8.5.2 Isobaric Process

Definition. The isobaric process is defined as

δp̂(τ) = 0 (8.32)

This leads to a basic relation as

d̄Û = δŴ (8.33)

This relation is important in defining the isobaric heat ca-
pacity.

8.5.3 Isothermal Process

Definition. The isothermal process is defined as

δT̂ (τ) = 0 (8.34)

We can not read a basic relation of isothermal process
from the first law of Thermodynamics since it annihilates
neither heat nor work. Thus, we need equation of state for
further analysis. Suppose we now only consider the ideal
gas. And then we have

p̂V̂ = constant (8.35)

This is the basic relation of ideal gas under isothermal pro-
cess.
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8.5.4 Adiabatic Process

Definition. The adiabatic process is defined as

δQ̂(τ) = 0 (8.36)

The first law of Thermodynamics infers

d̄Û = δŴ (8.37)

Again, we need to invoke equation of state. And we also
work on ideal gas this time. From the first law

− p̂ dV̂ = Cu dT̂ (8.38)

Also, from the equation of state

p̂ dV̂ + V̂ dp̂ = νR dT̂ (8.39)

We solve
p̂V̂

γ
= constant (8.40)

where
γ = Ch/Cu (8.41)

8.5.5 Polytropic Process

Except for the processes with certain parameters or quan-
tities invariant, there is also a process who is the superpo-
sition of several process. This can be generalized as

Definition. The polytropic process is defined as

p̂V̂
n
= constant (8.42)

In this process, we have a special corresponding heat
capacity as

Cn = Cu

(
γ − n

1− n

)
(8.43)

8.6 Carnot Cycle and Carnot Engine

Previously, the processes we discuss are all non-self-
intersecting process. However, a real process can return
to its initial state after some time, which is what is usually
called cyclic process. To discuss this, first we need the
definition of thermodynamic cyclic process

Definition. The thermodynamic cyclic process is a ther-
modynamic process satisfying

|ψ(τ)⟩ = |ψ(τ ′)⟩ (8.44)

where τ and τ ′ represent certain proper time.

Using the thermodynamic cyclic process, we can
build the heat machine

Definition. A heat machine is a state in thermodynamic
cyclic process.

For chosen coordinates, the cycle can have directions.
Usually, we will initially choose a direction as the stan-
dard direction of a cycle. And if the direction of a process
is against the standard direction, this cycle is then the re-
verse cycle.

In order to define the direction of the cycle, we need
some preliminary illustration. Assume that there are finite
number of parameters served as coordinates to specify a
state. Then we can set up a manifold. Thus, a cycle can
be expressed as a curve in the manifold. We need to as-
sume that the manifold is orientable, and assume we have
already chosen an orientation.

Now, we give the definition of standard and reverse
cycle

Definition. A cycle is standard if∮
d̄Ŵ ⩾ 0 (8.45)

A cycyle is reverse if∮
d̄Ŵ < 0 (8.46)

Thus, the heat machine is furthermore divided into

Definition. A heat engine is a state in standard thermo-
dynamic cyclic process.

A refrigerator is a state in reverse thermodynamic
cyclic process.

After a period of cyclic process, the energy of the state
remains invariant. Thus, we have an equation

δQ̂ = −d̄Ŵ (8.47)

Thus, a cyclic process can be divided into a heat absorp-
tion process and a heat release process. In this sense, we
can calculate the heat absorbed and released in the cycle,
defined by

Definition. The absorbed heat in a cycle is defined as

Q̂ab = max

∫
δQ̂ (8.48)

The released heat in a cycle is defined as

Q̂ rs = min

∫
δQ̂ (8.49)
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It can be easily proven that the sum of the absorbed
and released heat is the total work of a cycle. For a heat
machine, we can define the efficiency through this two
concepts

Definition. The efficiency of a heat engine is defined as

ηe =
Ŵ

Q̂ab

(8.50)

The efficiency of a refrigerator is defined as

ηr =
Q̂ rs

Ŵ
(8.51)

In our application, the cyclic process usually satisfies
some macroscopic conditions. Thus, we have the con-
strained thermodynamic cyclic process

Definition. A constrained thermodynamics cyclic pro-
cess is a thermodynamic cyclic process constrained by
conditions of first and second law of Thermodynamics

This constrained cyclic process can be used to build a
special kind of heat machine

Definition. A reversible heat machine is a state in con-
strained thermodynamic cyclic process.

We can see that a reversible heat machine have the
capacity to be both a heat engine and a refrigerator. This
property plays an important role in proving the Carnot the-
orem.

From now on, unless stated, all the cyclic process we
mention refers to the constrained thermodynamic cyclic
process.

Now, we introduce a special kind of cyclic process —
Carnot cycle

Definition. The Carnot cycle is a cyclic process consists
of two isothermal processes and two adiabatic processes.

Suppose the temperature of the two isothermal pro-
cess is Th and Tl, where Th > Tl. Then the Carnot cycle
can be used as a heat machine touched by heat reservoir
with temperature Th and Tl.

Definition. A Carnot heat machine is a heat machine
working in Carnot cycle.

Theorem. The efficiency of Carnot heat engine is

ηce = 1− Tl
Th

(8.52)

The efficiency of Carnot refrigerator is

ηce =
Tl

Th − Tl
(8.53)

This theorem is obvious if we write the entropy as

∆Ŝ =

∮
δQ̂

T̂
(8.54)

and notice the entropy is invariant under cyclic process,
which lead to

Q̂ ∝ T̂ (8.55)

Last but not least, we introduce a significant theorem —
Carnot theorem

Carnot Theorem. Any reversible heat machine working
under the same source has the same efficiency, and the ef-
ficiency of reversible heat machine is higher than that of
irreversible heat machine.

Proof. Suppose we have two heat machine x and y work-
ing under the same source with efficiency ηx and ηy re-
spectively. Machine x is any heat machine and machine y
is the reversible heat engine.

(1) If machine x is reversible, there is reasoning like
follows: first let x be heat engine and drive y to be
refrigerator. Engine x will release work

Ŵ = ηx Q̂ab (8.56)

And the high temperature reservoir will lose heat Qab

but gain from y

Q̂ rs = η−1
y Ŵ =

ηx
ηy

Q̂ab (8.57)

According to the second law of Thermodynamics,
the entropy of the combination should not decrease,
which leads to

Q̂ rs ⩽ Q̂ab (8.58)

which leads to
ηx ⩽ ηy (8.59)

Reverse the two machine, i.e, let x be refrigerator
driven by y as heat engine. Similar reasoning will
provide

ηy ⩽ ηx (8.60)
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Thus
ηy = ηx (8.61)

Consequently we prove the first part of the theorem.
(2) If machine x is an irreversible heat engine, similar
reasoning will produce

ηx ⩽ ηy (8.62)

Consequently, the second part of the theorem is
proved.

Synthesizing the above deduction can the theorem be
proved.

8.7 Entropy Measurement

The entropy is defined through the density operator. How-
ever, for a macroscopic system, it can be too hard to de-
termine the density operator, which causes difficulties in
measuring the entropy. Nonetheless, if some macroscopic
properties are known for certain situations, we can calcu-
late the entropy through the other thermodynamic param-
eters.

To do this, first formulate the entropy as

dŜ =
δQ̂

T̂
(8.63)

Notice that if the system is constrained by conditions of
first and second law of Thermodynamics

δQ̂ = dÛ + p̂ dV̂ = dĤ − V̂ dp̂ (8.64)

Now if we have the heat capacity Cu, Ch and suppose we
have some equation of state, we can write

dŜ =
Cu

T̂
dT̂ +

1

T̂

(
∂Û

∂V̂
+ p̂

)
dV̂

=
Ch

T̂
dT̂ +

1

T̂

(
∂Ĥ

∂p̂
− V̂

)
dp̂

(8.65)

Next, we use this to calculate entropy in three specific sit-
uations.

8.7.1 Entropy of Ideal Gas

For ideal gas, there is

∂Û

∂V̂
= 0

∂Ĥ

∂p̂
= 0 (8.66)

Thus

dŜ =
Cu

T̂
dT̂ +νR dlnV̂ =

Ch

T̂
dT̂ +νR dln p̂ (8.67)

8.7.2 Entropy of Mixing Process of Ideal Gas

Suppose the total amount of substance is ν and each sort of
gas takes up ci and there is not temperature change during
the mixing. Then the process can be regarded as the diffu-
sion of each sort of gas with parameter χi to χ. Therefore

∆Ŝ = −νR
q∑

i=1

ci ln
χi

χ
= −νR

q∑
i=1

ci ln ci (8.68)

8.7.3 Entropy of Phase Transition

The entropy of phase transition is quite simple. Since the
temperature is invariant during the phase transition, there
is

∆Ŝ =
Λ

T̂
(8.69)

where Λ is the latent heat and T̂ is the temperature during
the phase transition.

– 14 –


