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Mathematical Foundation Topology and Manifold

Definition of Topological Space

Definition from textbook

Definition

Topological space is a set X together with a subset T of its power
set satisfying

1 ∅, X ∈ T
2 Closed under finite intersection

3 Closed under arbitrary union

Topology is the generalization of open interval.

Example

Open set of Rn is defined as

U = span{(a, b)}
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Mathematical Foundation Topology and Manifold

Construction of Manifold

Definition

A map f between topological spaces (X, T ), (Y,S) is continuous if

(∀V ⊂ img(f) ∈ S)f−1[V ] ∈ T

Definition

Topological homeomorphism is a bijection f satisfying f and f−1

is continuous.

Definition

(n-dimensional Cr) manifold is a topological space with open
cover Uα satisfying

1 There exists homeomorphism ψα : Uα → Vα (∀Uα)

2 For Uα ∩ Uβ 6= ∅, composite ψβ ◦ ψ−1
α is Cr.
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Mathematical Foundation Lie Group and Lie Algebra

Lie Group

Definition

Group G is a set with multiplication · : G×G→ G satisfying

1 (g1g2)g3 = g1(g2g3)

2 (∃e) ge = eg = g

3 (∀g,∃g−1) gg−1 = g−1g = e

Definition

Lie Group G is both a group and a n-dimensional smooth manifold
with multiplication · and inverse −1 is smooth.

This assigns a group with a coordinate system.

Definition

Left transformation Lg is a map Lg : h 7→ gh.
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Mathematical Foundation Lie Group and Lie Algebra

Lie Algebra

Definition

Vector field Ā is left invariant if Lg∗Ā = Ā.

Definition

Lie bracket of vector space V is a map V × V → V satisfying

1 [A,B] = −[B,A]

2 [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0

A vector space with Lie bracket forms a Lie Algebra.

Definition

Define
[A,B] = [Ā, B̄]e

with commutator of vectors in Lie Group G. This forms the Lie
Algebra of Lie Group G.
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Definition

Lie bracket of vector space V is a map V × V → V satisfying

1 [A,B] = −[B,A]

2 [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0

A vector space with Lie bracket forms a Lie Algebra.

Definition

Define
[A,B] = [Ā, B̄]e
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Mathematical Foundation Fibre Bundle

Principal Bundle

Definition

Left (right) action of manifold K is a map L(R) : K ×G→ K
satisfying

1 L(R)g is a diffeomorphism.

2 Lgh = LgLh and Rgh = RhRg

Definition

Principal bundle is constructed with a bundle manifold P , a base
manifold M and a structure group G, satisfying

1 G has a free right action on P

2 Exists a smooth onto projection map π : P →M satisfying
π−1[π[p]] = {pg, g ∈ G}

3 Exists a local trivialization TU : p 7→ (π(p), SU (p)) ∈ U ×G
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Mathematical Foundation Fibre Bundle

Associated Bundle

Definition

Fibre bundle associated to principal bundle P is a set P × F/ ∼
with

1 Left action χg(f) = gf

2 Induced free right action ξg(p, f) = (pg, g−1f)

3 Equivalence relation (p, f) ∼ (pg, g−1f)
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Mathematical Foundation Fibre Bundle

Cross section, connection and curvature

Definition

Smooth map σ : U → P is a cross section if

π(σ(x)) = x

Definition

Connection is a smooth g-valued 1-form ωU for each local
trivialization TU . And if the transition map of TU and TV is guv,
there is

ωV = g−1
uv ωUguv + g−1

uv dguv

Definition

Curvature of connection is defined as

Ω = dω +
1

2
[ω, ω]
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Construction of Fields Construction of Background

Background Construction

Definition

Base Manifold M :
4-dimensional connected Hausdorff second-countable orientable
time-orientable framed smooth manifold

Definition

Structure Group G: Matrix Lie Group

Definition

Principal Bundle P :
Trivial principal bundle P = M ×G

Definition

Associated Bundle Q:
Q = (P × F )/ ∼ with F a Banach space

Definition

Background: (M, gµν , ε, V, P,G, F,R, χ, ξ,∼, Q)
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Construction of Fields Construction of Field

Field Construction

Definition

Gauge is the cross section of principal bundle.

Definition

Field ψ is the cross section of associated bundle.

Definition

Gauge field is a connection of principal bundle

ωµ = eAµ

Definition

Gauge field strength is the curvature of principal bundle

Ωµν = eFµν
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Construction of Fields First Quantization

First Quantization

Definition

First quantization is to construct the Lagrangian of matter field as

L = −iψ̄(γµ∇µ +m)ψ

where ∇µ is the covariant derivative of associated bundle

∇µ = ∂µ + ωµ

Definition

Construct the kinematic term as

L = −1

4
tr(Fµν · Fµν)
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Construction of Fields First Quantization

First Quantization

Definition

First quantization is to construct the Lagrangian of matter field as

L = −iψ̄(γµ∇µ +m)ψ

where ∇µ is the covariant derivative of associated bundle

∇µ = ∂µ + ωµ

Definition

Construct the kinematic term as

L = −1

4
tr(Fµν · Fµν)

C. Zhang (Beijing Normal University) U(1) Gauge Field Theory June 15, 2016 14 / 20



Construction of Fields U(1) Gauge Theory

U(1) Gauge Theory

Principal Bundle: M ×U(1)

Left action χg(ψ) = exp{−iqθ}ψ Usually take q = 1
Representation Group Ĝ = G = U(1)
Thus, the covariant derivative

∇µψ = ∂µψ − ieAµψ

Matter term
L = −iψ̄(γµ∂µ +m)ψ

Gauge term

L = −1

4
tr(Fµν · Fµν)

Interaction term
L = −ieψ̄γµAµψ
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Thus, the covariant derivative

∇µψ = ∂µψ − ieAµψ

Matter term
L = −iψ̄(γµ∂µ +m)ψ

Gauge term

L = −1

4
tr(Fµν · Fµν)

Interaction term
L = −ieψ̄γµAµψ

C. Zhang (Beijing Normal University) U(1) Gauge Field Theory June 15, 2016 15 / 20



Construction of Fields U(1) Gauge Theory

U(1) Gauge Theory

Principal Bundle: M ×U(1)
Left action χg(ψ) = exp{−iqθ}ψ Usually take q = 1
Representation Group Ĝ = G = U(1)
Thus, the covariant derivative

∇µψ = ∂µψ − ieAµψ

Matter term
L = −iψ̄(γµ∂µ +m)ψ

Gauge term

L = −1

4
tr(Fµν · Fµν)

Interaction term
L = −ieψ̄γµAµψ

C. Zhang (Beijing Normal University) U(1) Gauge Field Theory June 15, 2016 15 / 20



Construction of Fields U(1) Gauge Theory

U(1) Gauge Theory

Principal Bundle: M ×U(1)
Left action χg(ψ) = exp{−iqθ}ψ Usually take q = 1
Representation Group Ĝ = G = U(1)
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Second Quantization of U(1) Gauge Field
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Second Quantization of U(1) Gauge Field Path Integral

Path Integral of Gauge Field

The original path integral should be

W [J ] =

∫
[Dω] exp{i

∫
ε(−1

4
Fµν ·Fµν+Jµ·ωµ)}

However, we find that this is uncertain since the gauge freedom
makes the four components of connection not all independent.
Notice that the electromagnetic wave is a transverse wave. Thus
we introduce temporal gauge fixing

W [J ] =

∫
[Dωδ(ω0)] exp{i

∫
ε(−1

4
Fµν ·Fµν+Jµ·ωµ)}

However, this will destroy the Lorentz invariance.
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Second Quantization of U(1) Gauge Field General Gauge Fixing

General Gauge Fixing

Consider Lorentz invariant gauge fixing

f(ω)− C = 0

Introduce Fadeev-Popov determinant

Σ−1
f ≡

∫
[Dg]δ(f(ω)− C)

Remarks. The strictness of this determinant is still under
investigation. Adding ΣfΣ−1

f into the path integral and get

W [J ] =

∫
[DωDgδ(f(ω)− C)]Σf exp{i

∫
ε(−1

4
Fµν ·Fµν+Jµ·ωµ)}
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Second Quantization of U(1) Gauge Field General Gauge Fixing

General Gauge Fixing

For Abelian gauge theory, f can be chosen f ∼ ω and thus Σf

finally turn out to be a constant → normalization factor.

By adding a Gaussian factor of C∫
[DC] exp{− i

2α

∫
εC ·C}

and integrate C, there will be

W [J ] =

∫
[Dω] exp{i

∫
ε(−1

4
Fµν ·Fµν−

1

2α
f ·f+Jµ·ωµ)}

This is the desired result.
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General Gauge Fixing

For Abelian gauge theory, f can be chosen f ∼ ω and thus Σf

finally turn out to be a constant → normalization factor.
By adding a Gaussian factor of C∫

[DC] exp{− i

2α

∫
εC ·C}

and integrate C, there will be

W [J ] =

∫
[Dω] exp{i

∫
ε(−1

4
Fµν ·Fµν−

1

2α
f ·f+Jµ·ωµ)}

This is the desired result.
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Thanks!
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