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ABSTRACT: This is the kernel of Constructive Physics. Constructive Physics is an
attempt to construct fundamental theory of Physics directly through the definition and
deduction. Constructive Physics is divided into a kernel and several service packs.
The kernel is the core of the project with central construction of fundamental theory of
Physics based on strictly necessary mathematical theory. However, a kernel can be lim-
ited in its broadness. Thus, service packs are to provide supplement of the kernel, which
may include details of mathematical theories involved or physical theories worked in
lower symmetry and energy scale. This project is semi-open source and organised under
the way similar to a computer system.
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Methodology

This part introduces the methodology of studying Physics
recognized by this document.

Definition of Physics

Definition. Physics is the search for and application of
rules that can help us understand and predict the world.

This definition is formulated by
m n
Ui 6 = Tl 0,011+ >0y = H]
i=1 i=1
All physical contents in this document is identified through
this definition.
First Principle

The first principle of Physics is the symmetric principle

Symmetric Principle. The Symmetric Principle is formu-
lated as
0L =0

where I is the action and 16 is the internal variation.

Conventions and Notations

Locality Condition

The locality condition is interpreted as

Locality Condition. The action type-I has the formula-

I:/sﬁ

where Lagrangian L is a local continuous functional of ¥
and 0, only.

tion

First Theorem

The first theorem of Physics is the Noether’s theorem

Noether’s Theorem. Every continuous symmetry in a the-
ory Lgyr corresponds to a conserved current
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Noether’s theorem is logically dependent on the sym-
metric principle.

This section is to claim the default values of conventions and notations.

Abstract Index Notation This document complies abstract index notation.

Einstein’s Summation Convention Repeating upper and lower indexes represents summation or contraction.

Indexes This document Greek letters represent abstract indexes and Latin letters represent specific indexes.

Fonts Latin letters in Italic represent variables and Latin letters in Roman represent particular specified meaning.

Equations Only key equations are numbered.

Unit System This document has two unit system — natural unit system and geometric unit system. Geometric unit

system in this document is interpreted as ¢ = 7 = 1 and gravitational constant G is used as coupling constant.

Definition and Proof

This section illustrates the undefined mathematical grammar.

The definition should comply the following pattern

Definition. A concept is a concept satisfying conditions.

Definition. A concept is adjective if conditions

In the first formula, concept is the concept already well defined, concept is the concept that is defined through this

definition. The second formula gives the definition of a concept as adjective concept. Only concepts and properties of

concept should be expressed as definition.
The proof should comply the following pattern.

Proof. condition = key point 1 = --- = key point i = --- = key point n = conclusion m|



1 Foundation of Mathematics

Mathematics is the language of choice for scientific de-
scription and modelling. Mathematics describes objects
in a logical way, preventing any mistakes due to incon-
sistency. A mathematical consistent theory is only math-
ematically falsifiable, which provides great property for
applicative analysis.

1.1 Basics of Mathematics

This section illustrates the foundation of Mathematics.

1.1.1 Mathematical Logic

Mathematics is a kind of scientific language. Just as all the
languages, Mathematics has to start with some concepts
that are not able to be explained by itself. These concepts
are called intuitive concepts. The intuitive concepts are
listed as follows

Concept. Symbol is the character in BIEX 2¢

Concept. Independent Variable is a symbol, convention-
ally being Greek letter.

Note.
variables are usually assigned with true or false.

In foundation of Mathematics, independent

Note. A predicate is an independent variable as-
signed with true or false.

Concept. Predicate Constant € is a symbol.

Note. The independent variables and predicate con-
stant can form a predicate as

pey

Concept. Negation - is a symbol defined as

Y | true false

- | false true

Concept. Disjunction V is a symbol defined as

W true true false false

@ true false true false

YV | true true true false

Concept. Conjunction A is a symbol defined as

v true true false false
© true false true false
WA | true false false false

Concept. Implication — is a symbol defined as

W true true false false
@ true false true false
Y — ¢ | true false true true

Note. The inference = is a true implication.

Note. The truth of a predicate can be influence by
some other predicates. The predicate ¢ under condition
predicate x will be denoted by i/, and its truth can be dif-
ferent for different condition predicates.

Concept. Existential Quantification 1 is a symbol de-
fined as

Ayl © \/ vl

where \/ represents the disjunction of all conditioned pred-
icates.

Concept. Universal Quantification Y is a symbol defined
as

Vxyle © N\ vl

where |\ represents the conjunction of all conditioned
predicates.

Concept. Priority (),[] is a pair of symbols. The inde-
pendent variables and predicates inside priority are re-
garded as an independent variable or a predicate.

Note. Priority () is higher than [ ] unless stated.
Concept. Class C is a symbol defined as
C = {xly0)}

where x is the independent variable and y(x) is a predi-
cate. The above expression means

xeC © Y(x) is true
Concept. Subclass S of class C is a class satisfying
xeS = xeC

Concept. Object x is a symbol satisfying xe C where C is
a class.

11—



Note. Class is an essential concept in mathematical
logic. The definition of class will allow the existence of
some weird class. For example, the Russell class is de-
fined as

R ={x|x¢x}

which means it “contains” only the object that does not
belong to itself.

Note. Symbol := refers to “define as”.

The introduction of intuitive concepts has ended here.
All the concepts in the subsequent texts will have a rigor-
ous definition.

1.1.2 Set Theory

This subsection illustrates the axiomatic set theory.

Note. Although this subsection aims at axiomatic set
theory, the elaboration will not follow the genuine intro-
duction of axiomatic set theory.

Note. Set is a very important concept in Mathematics.
In mathematical logic, there is a concept, class. However,
class allows some impractical situation like Russell class
to exist. Thus a new concept is needed to make Mathemat-
ics pragmatic.

Definition. Set is a class if it can be a subclass.

Note.
elaborations of axiomatic set theory which define the set

This definition can be different from many
through several axioms. In this document, the axioms will
be presented as the definition of operations on sets.
Definition. Element is the object of a set.
Definition. Proper class is a class that is not a set.

Note. The Russell class is a proper class.
Definition. Subset is the subclass of a set.

Note. Statement “Set A is a subset of set B” is denoted
by AcC Bor BD A.

Definition. Set A and set B is equal if
ACBand BC A

Definition. Set A is a proper subset of set B, denoted by
ACB,if
AcCcBandA # B

Definition. Empty set @ is a set that y(x) is false for all
independent variables.

Operation of Sets

Definition. The union of set A and set B is defined as
AUB :={x|x€eAV xeB}

Definition. The intersection of set A and set B is defined
as
ANB:={x|xeA N xeB}

Definition. The complement of set A with respect to U
(A c U) is defined as

CuA ={x|xeUA x¢A}

Map and Structure

Definition. Cartesian Product of set X and set Y is de-
fined as
XxY ={(xy)|xeA,ye B}

Definition. Graph G of X with respect to Y is a subset of
X X Y satisfying
|,y eRIN(xY)EGI=y =)

where = means the independent variables in two sides are
the same variable.

Definition. Map f is a graph r C X X Y together with set
X and set Y, denoted by

f:X>Yor fixy
where x€e X andy €Y.

Note. The value of map f at variable x is denoted by
f(x) from now on.

Definition. Domain dom(f) of a map f : X — Y is the
set X, denoted by
dom(f) =X

Definition. Codomain cod(f) of amap f : X — Y is the
set Y, denoted by
cod(f) =Y

Definition. Image img(f) ofamap f : X — Y is defined
as

img(f) :={y € Y|(AxeX) f(x) = y}

Definition. Image of amap f : X — Y to set U C X is
defined as

img(f)[U] = fIU] = {y € Y|(AxeU) f(x) = y}
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Note. Symbol = refers to “denoted by”.

Note. Previously, there is a concept called range of a
map. However, range has different definitions in different
documents. Thus, in order to coincide with other docu-
ments, concept range is deactivated.

Definition. The restriction of map f : X — Y to X c X is
defined as
f iy AxeX

Definition. The composite of map f : X — Y and map
g: Y = Zisdefined as

[g o f1(x) = g(f(x))
if dom(g) € img(f).
Definition. Two maps f and [’ are equal if

(i) dom(f) = dom(f”)
(ii) graph(f) = graph(f”)

Definition. Map f : x — y is injective if
Ve, xX)if)=fx)=>x=x
Definition. Map f : x — y is surjective if

VyeY,dxeX): f(x) =y

tive.

Note. Symbol : refers to “such that”.
Note. A map that is injective, surjective or bijective is
also called injection, surjection or bijection respectively.

Definition. Constant map f is defined as
Vx, X’ €X): f(x) = f(x)
Definition. Identity map idy of set X is defined as
dy : x> x

Definition. Inverse image of map f: X — YtosetY C Y
is defined as

img ' (f)[V] = f7'[V] = {xeX| f(x)eT)

Definition. Inverse map f~!
f: X > Yisdefined as

: img(f) — X of injection

£ ) = x| AL f(x) =yl

Connotation. Mathematical structure % on set X is a sub-
set of S(X) where S(X) is a set generated by X.

There is an equivalent definition of mathematical
structure on set

Connotation. Mathematical structure o on set X is a
map o : S(X) — {true, false } where S(X) is a set gener-
ated by X and {true, false} is the set of true and false.

Note. It is easy to verify the equivalence of the above
definitions. Set {x|o(x)} can be the set needed in the first
definition; and if there is a chosen subset ¥ of S(X), o
maps every element of the subset to true and the rest to
false.

Connotation. Morphism m : X — Y from structured set
(X, o) to (Y, 7) is a bijection satisfying

o(x) © 1[m(x)]

Definition. Family of sets F is a class with all objects
being sets.

Note. A family of sets may be a proper class.
Definition. Power set P of set X is defined as
P={X|XcX)
Theorem. Power set is a set.
Proof. There exists a class # such that # c P. o

1.1.3 Category Theory

Definition. Indexing function t of family of sets F in-
dexed by non-empty set I is a surjection

L:i— X,'
where i € I,X; € ¥, non-empty refers to I # @.

Note. A family of sets ¥ is indexed (by I) if there
defines an indexing function from / to .

Definition. Union of sets in indexed family is defined as

UXi = {x1@) = x e Xy}

i€l
Definition. Intersection of sets in indexed family is de-
fined as

()X = {x|(Vi)z x € X;)

iel



Definition. Cartesian product of sets in indexed family is
defined as

[1%i = tm: 1 - X;|(¥i) mG) € X;)

i€l
Definition. Category C(ob, mph) is a class ob(C) of ob-

jects together with a set mph(X, Y) of morphisms between
object X and Y.

Definition. Functor F from category C to category D is
a map obF : obC — obD together with a map mphF :
mphC — mph® satisfying

(i) mphF(f o g) = mphF(f)omphF(g)
(ll) mphF(ldx) = idobF(X)

Definition. Functor Transformation t from functor F to
functor G is a set of morphisms

7= {1x € mph | 7x : obF(X) — obG(X)}

Definition. A functor transformation v : F — G is natu-
ral if

(VX, Yeob, femph) : tx o mphF(f) = mphG(f) o 1y

1.2 Algebraic Structure

This section illustrates mathematical structure of algebra.

1.2.1 Group Structure

Definition. Binary operation on set X is a map f : X X
X - X

Note. In binary operation, notion f(x,y) is usually
replaced by xfy.
Note. Binary operation is a mathematical structure.

Definition. Product - on a set X is a binary operation on
set X.

Note. Usually, product x - y can be abbreviated to xy.

Definition. Semi-group G is a non-empty set together
with a product - satisfying associative condition

(Vg, h,k € G) =:(gh)k = g(hk)
Definition. Monoid M is a semi-group satisfying

(FeeM):ge=eg=g

Note. Element e is called identity element of monoid

A

M.
Definition. Group G is a monoid satisfying
VgeG,dheG):gh=hg=e

Note. Element % is called inverse element of element
g, denoted by g~!.

Theorem. The identity element of a monoid and inverse

element of an element in a group are unique.
Proof. There are the following argument

(i) If ¢’ and e both are the identity element, then

(i1) If & and k both are the inverse element of g then
h=he=hgk=cek=k
which ends the proof. |
Definition. Group G is abelian if
Vg, heG):gh=hg

Note.
group.

Abelian group is also called commutative

1.2.2 Ring Structure

Definition. Ring (R, +,-) is a non-empty set R together
with binary operation addition + and multiplication - sat-
isfying
(i) Addition: (R,+) is an abelian group
(ii) Multiplication: (R,-) is a semi-group.
(iii) Distribution: (Nr,s,t e R)zr-(s+t)=r-s+r-t
Note. The last condition indicates the compatibility
of addition and multiplication.
Definition. Ring (R, +,-) is commutative if
~Vr,seR)zr-s=s-r
Definition. Ring (R, +, ") is a ring with identity if (R, ) is
a monoid.
Definition. An element r in a ring (R, +, -) with identity is
a unit if it has a multiplicative inverse.
Definition. A ring (R, +, -) with identity is a division ring
if every element except the identity element of addition is

a unit.

Definition. Field is a commutative division ring.
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1.3 Number Theory

This section illustrates the construction of numbers.

1.3.1 Relation Structure
Definition. Relation R of set X is a subset of X X X

Note. Usually, that element x and element y has rela-
tion R, i.e. (x,y) € R, is denoted as xRy.
Note. Relation is a mathematical structure on set.

Definition. Equivalence relation ~ of set X is a relation
satisfying

(a) Reflexivity: (VxeX)zx ~ x

(b) Symmetry: x ~y =y ~x

(c) Transitivity: |x ~y|A|ly~z|=> x~z2

Definition. Equivalence class E|, of a set X with equiva-
lence relation ~ determined by x is defined by

El, ={yeX|y~ x}

Note.
should be phrased as equivalence set since it can be easily

According to Semiotics, equivalence class

proven that the equivalence class is a set. However, due to
some historical reasons, concept equivalence set was not
invented. Thus, to coincide with other documents, equiva-
lence class is used in this document.

Note. Two sets X and Y are disjointif XN Y = @.

Theorem. Two equivalence class E|, and E'|, can be ei-
ther equal or disjoint.

Proof. There are the following arguments

(1) If E|, N E’|, = @, then they are disjoint
(i) If El, N E'|y # @, supposey € E[,NE'|, =@
and there is

ly~xIAly~xX|=2x~y[Aly~x|=2x~x

Thus (Yw € E|,)w € E’|,, which means E|, C
E’| Reverse E|, and E’|, to get E’|,, C E|, Thus
E|, and E’|, are equal

Thus, the theorem is proved. O

Definition. Partition D of set X is a family of sets with all
objects being non-empty disjoint subsets of X.

Theorem. A partition is a set.

Proof. There exists a class D such that D c D. i

Note. If define every element of a partition as an
equivalence class, there will be a bijection between the
partition and the equivalence class.

Note. Quotient space X/~ is a partition formed by ~.
Definition. Order relation < of set X is a relation satisfy-
ing

(a) Comparability:

|x <yl Ay < x| =flase

|x <y|V |y < x|=true

(b) Non-reflexivity: x < x = false

(¢) Transitivity: (x < Y)AN (Y <2)=>x<Z
Definition. Partial order relation < of set X is a relation
satisfying

(a) Reflexivity: x < x

(b) Anti-symmetry: |[x <y|Aly<x|=>x=Yy

(c) Transitivity: |x <y|A|y<z|=x<z
Definition. Total order relation < of set X is a relation
satisfying

(a) <is a partial order relation

(b) Comparability:

|x <ylA |y <x|=flase

[x <y|V|y<x|=true

Note. The order relation and partial order relation can
be disparate. There are no subset interconnections in be-
tween. However, partial order relation and total order re-
lation have a clear including interconnection, i.e. a total
order relation must be a partial order relation.

Note. A set with (partial or total) order relation is
called (partially or totally) ordered set.

Definition. Open interval (a, b) in an ordered set (X, <) is
defined as
(a,b) :={xeX|a<x<b}

Note. If (a,b) = @, then a is the immediate prede-
cessor of b and b is the immediate successor of a.

Definition. Alphabetical order relation < of Cartesian
product X X Y of two ordered set (X,< |x) and (Y,< |y)
is defined as

(X1, Y1) <(x2,y2) © (x1<x2) V [[x1 = x2] A|y1 <¥21]



Note. Alphabetical partial or total order relation of
Cartesian product can be defined through similar ways.

Note. Element b is the largest element of partially
ordered set (X, <) if (Yx € X):x < b. Similarly, element
a is the smallest element of partially ordered set (X, <) if
VxeX)za<x

Note. Subset X of partially ordered set (X, <) is
bounded above if (b€ X,VieX): % < b and b is the
upper bound. Similarly, subset X of partially ordered
set (X, <) is bounded below if (JacX,VicX)a < ¥
and a is the lower bound.

Definition. Supremum sup is the smallest element of
upper bound. Infimum inf is the largest element of
the lower bound.

Note. A set X has supremum property (resp
infimum propert) if for any non-empty subset of X
which is bounded above (resp below) has an supre-
mum (resp infimum).

1.3.2 Real Number Field
Definition. Real number set R is a totally ordered field
satisfying
(a) Vx,y,zeR)ix<y=>x+7<y+2
(b) Vx,y e R)z|x<y|A|z>0|=>x-2<y 2
(c) Order relation < has supremum property

Definition. A subset A of R is inductive if

(a) 1€A
(b) ¥xeA):x+1€A

Definition. Positive integer set 7, is defined as

Z. =) A

i€A
where A is the set of all inductive subsets in R and A; is
inductive subset of R

Note. Section of positive integer Z, (n-tuple) is
Z, ={z€Zs|1<z2<n}
Definition. Integer set 7 is defined as
Z=27Z,U{0}uZ_

where
Z_={-x|x€eZ,}

Definition. Rational number Q is defined as
Q:={x-y"|IxyeZ|Aly#0])

Definition. Open interval (x,y) (—c0,y), (x,+0) is de-
fined as

(xy)={zlx<z<y}
(=00,y) ={zlz<y}

(x,+0) ={z| x <z}

Definition. Closed interval [x,y], (—0,V], [x, +00) is de-
fined as
ey '={zlx<z<y}

(=00, y] ={zlz<y}

[x,+00) :={z|x <z}

Note. There are also definitions for half open and half
closed interval. But they are not adopted in this document.

Note. Sometimes the real number set is written as
(—00, +00).

1.3.3 Finiteness and Countability
Definition. A set X is finite if it is empty or

Af : X - Z,) = f is bijective
Definition. A set is infinite if it is not finite.

Definition. Cardinality of an empty set or a non-empty
finite set X is defined as

(i) card(@) =0
(ii) card(X) = nif Abijection f : X — Z,

Theorem. Z,R, Q are infinite.
Theorem. The cardinality of a set is unique.
Theorem. The subset of a finite set is finite.

Corollary. For finite set X and Y, there is
X CcY & card(X) < card(Y)

Note. A finite operation of an indexed family of sets
means the family of sets is indexed by a finite set.

Theorem. A finite union (Cartesian product) of finite sets
are finite.
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Definition. A set is countably infinite if
Af : X > Z,) = f is bijective

Definition. A set is countable if it is finite or countably
infinite.

Definition. A set is uncountable if it is not countable.
Theorem. The subset of a countable set is countable.
Corollary. Z.,Q are countably infinite.

Note. A countable operation of an indexed family of
sets means the family of sets is indexed by a countable set.

Theorem. A countable union of countable set is count-
able. A finite product of countable set is countable.

Note. Notation X" and X“ with X being a set means

x'=1[x. x=][x

i€Z, i€Z,

Corollary. There does not exist an injective  : P(X) — X
or a surjective f : X — P(X) where X is a set and P(X) is
the power set.

2 General Topology

This chapter constructs the topological structure on sets.
Default space refers to topological space.

2.1 Topological Space

Definition. Topological space (X, 7T) is a non-empty set X
together with a subset T~ of its power set satisfying

(i) Minimum collection
o, XeT
(ii) Union Property indexed by any indexing set J

UJUaeT
ael
(iii) Intersection Property indexed by Z,,
ﬂ U,‘ eT
i€Zy,

where J is a set of indexes.

Note. Family of sets 7 of topological space (X, 7) is
the topology of set X.

Note. The indexing set for union property and inter-
section property are different. The indexing set for union
can be an arbitrary indexing set, but that for intersection
can only be a finite and countable set.

Note. Topology is a mathematical structure.

Note. A subset X of X with 7 is open if X € 7~

Note. A subset X of X with 7 is closed if CxX € 7

Note. If (X, 77) and (X, 7>) are topological space, 7
is coarser than 7, or 7> is finer than 77 if 77 C 7>

Definition. Basis of topology B on set X is a subset of
power set of X satisfying

(i) Covering condition

MxeX,ABeB):x€B
(ii) Intersection property

|B;€ B|Alxe (| Bl=@BeB):xeBcC()Bi

i€Z, €2y

Definition. Topology 7 generated by basis B on set X is
defined as

T ={UcX|(VxeUdBeB):xe Bc U}

Note. This means that the topology is generated by
all possible union of basis element. This is valid since the
basis will satisfy the requirement of intersection.

Note. The topology generated by basis is uniquely
determined by the basis. However, there may exist many
bases that generate the same topology generated by basis.

Theorem. Topology generated by basis is a topology.

Proof. There are the following arguments
(i) For @ the condition is always true since no ele-
ments are contained in @. For X, the first condition
of definition of basis insures X € 7~
(i) Consider the union

U=JUiUieT
ieJ

By definition, (Vx e U,di€ J)z:x € U;
Also,U; e T > ABeB):xe Bc U;
Thus, Vxe U,ABe B):xe BC U



(ii1) Consider the intersection

U= (|UinUieT andB; = (| B, Bie BC U;
i€Zy, i€Zy,

First, Vx e U,Yi€ Z,,AB; € B):x € B; C U;

As a consequence, x € By c U

By definition, (B € 8):x € B C By

Thus, Vxe U,ABe B):xe BC U
The arguments show that the topology generated by ba-
sis satisfies the condition of a topology, and thus end the
proof. O

Note. A subset S of power set of X covers X if
Mx,AS €S)=2x€ )

Definition. Subbasis & for topology on set X is a subset
of power set of X that covers X.

Note. There are several definitions for subbasis for
topology and not all of them are equivalent.

Definition. Basis B associated with subbasis & on set X
is defined as

B:={(E|E€€&nel,)
i€Z,
Note. This means that the basis is generated by all
intersection of subbasis.
Note.
checked by verifying the properties of basis. The first con-

The validity of the above definition can be

dition is satisfied since the subbasis covers the set; and the
second condition is satisfied as the basis element is the in-
tersection of subbasis elements.

Note. Topology generated by subbasis refers to topol-
ogy generated by basis associated with the subbasis.

Corollary. Topology generated by subbasis is a topology.

Proof. Apparently. m|
Definition. Local base B(x) is a subset of N(x) satisfying
(YN e N(x),A1Be B(x))=:BCN

Definition. Natural Projection on Cartesian product of
indexed family of sets is defined as

pi+ x> my(i)

where x is the element and m, is the corresponding map in
the definition of Cartesian product.

Definition. Product topology K of Cartesian product of
indexed family of topological space

[[x:. 79

i€l
is defined as a topology generated by a subbasis
K := span{img™ (p)[O}] | O; € Tii € 1}

Note.
topology of product set. However, it fails to retain some

Box topology is another candidate for the

good properties such as the continuity (defined later) of
projection map so that it is eliminated.

Note. Element in a topological space is also called
point.

Definition. Induced topology S of a subset X of a topo-
logical space (X, 7)) is defined as

S={0nX|0eT}
Note. (X, S) forms a topological subspace of (X, 7).

Definition. n-dimensional Euclidean space R" is defined

R" := H R;

i€Zy,

as

Note. Usually, the product symbol - in R is omitted.

Definition. Distance of two point x and y in n-dimensional
Euclidean space is defined as

o(x,y) = D> (= y)(xi = yi)

i€Z,

where x' means m,(i) as is in the definition of Cartesian
product of indexed family of sets.

Note. Hereby, x = 4/y refers to x - x = y.
Note. In the above definition, a notation is used

Z% =Y+ Zlﬁi, Z'J’z:d/l

i€Z, €21 €7,

Definition. e-open ball of point p in n-dimensional Eu-
clidean space is defined as

B(p,e) ={qld(p,q) <&}

where € € R.
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Definition. Usual topology of n-dimensional Euclidean
space is the topology generated by subbasis being the set
of all open balls.

Definition. Neighbourhood N at point x of topological
space (X,T") is a subset of X satisfying

(0e€eT):xeOCN

Note. Open neighbourhood N is a neighbourhood
that is open.

Definition. Neighbourhood system N(p) of point p of a
topological space is the set of all neighbourhood of the
point.

Theorem. Subset U C X is open & (Vx € U) = U € N(x)

Proof. There are the following arguments
) fUeT,then(VxeU,AUeT)zxeUcCU
(1)) f(Vx e U):U € N(x), then

U=JUseT
xeU
where U, € 7 satisfies x € U, C U
These arguments end the proof. m|

Definition. Map f : X — X’ of topological space (X,T")
and (X', 7") is continuous if
YU € T zimg \(HU 1 e T
Note. Map f is C° means it is continuous.

Definition. Map f : X — X’ of topological space (X,T")
and (X', T") is continuous at point x € X if

NVfx)eU AU €T, AUeT)zxeUA flU cU’

The next theorem needs to invoke term “if and only
if” which means <. Proving ¢ < ¢ is usually divided
into proving ¥ = ¢ and ¢ = . The former is called
Sufficiency and the latter is called Necessity.

Theorem. Map f is continuous if and only if it is contin-
uous at every point in domain.

Proof. There are the following arguments
(i) Sufficiency. Provided f is continuous. Then Vx €
dom(f), suppose f(x) € O’ A O’ € T, there is

Jimg ' (HIO1 e T) =
x € img™ ' (HIO'IAimg(H)limg™ (HIO'T1 c O

Thus, f is continuous at every point in domain.

(i1) Necessity. Provided f is continuous at every point
in domain. Suppose O’ € 7~
If O = @, thenimg ' ()[O]=@ €T
If O # @, then

(Vx € img ' (HIO' )z f(x) e O NO €T

thus (AU € 7) = x € U C img™ ' (f)[U]
which means

(Vx € img ' (H)IO']) :img ™' (/)[O'] € N(x)

therefore img_1 HIoO'1eT
These arguments end the proof |

Corollary. The composite [ o g of two continuous map f
and g is continuous.

Corollary. Restriction of a continuous map is continuous.

Definition. Homeomorphism from topological space
X, T to(Y,Ty)isamap [ : X — Y satisfying

(i) Map f is bijective

(ii) Map f and f~' are continuous

Note. A homeomorphism is also called homeomor-
phic map.

Definition. Topological space (X, T) to (Y,7,) are home-
omorphic to each other if there exists a homeomorphism
in between.

Theorem. The inverse of homeomorphism is a homeomor-
phism.

Theorem. The composite of homeomorphisms is a home-
omorphism.

2.2 Topological Properties

Connotation. Topological Property is a predicate on
topological space satisfying

Yx & Yy
where X, Y are two homeomorphic topological space.

Note. Topological property is also called topological
invariant.
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2.2.1 Separation

Definition. The sequence {x;} of set X is a map {x;} :
Z, —> Xwhere xe Xandi€Z,.

Definition. The limit of a sequence {x;} is defined as

limxi=xo YUeNKX),IneZ)i>n.=>x, €U

1—00

Note.
phrased that {x;} converges to x.

That the limit of sequence {x;} is x is also

Note. The sequence is convergent if it has a limit.

Definition. Point x is the limit point of subset X of space
X, T) if

(YNeNX):NNXnCzlx}# @
Definition. Space (X,7") is Fréchet or T if
VMxzyeX,AU e Nx))z:y¢ U
Definition. Space (X, 7") is Hausdorff or T, if
(Vx#yeX, AU, e Nx), Uy e N):U,NnU, =2

Theorem. If (X,7) is Hausdorff, then a sequence of X
converges to no more than one point in X.

2.2.2 Countability

Definition. Subset X of space (X,7") is dense in X if
cls(X) € X.

Definition. A topological space is first-countable if every
point of it has a countable local base.

Definition. A ropological space is second-countable if it
has a countable base.

Theorem. The subspace of first-countable (second-
countable) space is first-countable (second-countable).

Theorem. The finite product of first-countable (second-
countable) space is first-countable (second-countable).
2.2.3 Connectedness

Definition. Closure cls(S) of a subset S of topological
space (X,7T") is defined as

cls(S) = Xo | S CXg AXa €T

ael

Definition. Interior int(S) of a subset S of topological
space (X,7T") is defined as

int($) = JXo | SO XoeT

ael

Definition. Boundary 0S of a subset S of topological
space (X, T) is defined as

dS = cls(S) N Cxint(S)

Theorem. Set X and @ are both closed and open in topo-
logical space (X, 7).

Definition. Topological Space (X,T") is connected if X
and @ are the only set that is both open and closed.

Theorem. Topological Space (X,T") is connected if
MU, V) c T)={U, V} is a partition

Note. Symbol 7 refers to —1.
Note. This theorem explains the reason for the name
connectedness.

Theorem. The union of connected subspaces of a topolog-
ical space is connected if their intersection is non-empty.

Theorem. The image of a connected space under a con-
tinuous map is connected.

Proof. There are the following arguments:
For continuous map f : X — Y with (X,7) connected,
assume that img[ f] is not connected, i.e.
(MU, V} C Timgry) = U UV = img(X)
there will be

FUln £ [V]is a partition A f[UL, f V€T

which indicates X is not connected and contradicts the pre-
vious condition. Therefore, img(X) is connected. m|

Corollary. Connectedness is a topological property.

Proof. Apparently. O
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2.24 Compactness

Definition. Family of sets C is an open covering of space
(X, T) ifit covers X and C C T .

Definition. Topological space (X,T") is compact if every
open covering of X has a finite subset that also covers X.

Theorem. Every closed subspace of a compact space is
compact.

Theorem. Every compact subspace of a Hausdorff space
is closed.

Theorem. The image of a compact space under a contin-
uous map is compact.

Proof. For continuous map f : X — Y, compact space
(X,7), n € Zy and an open covering C of img(X)

e

@Af-1IC] € £7'[C z leard(£~'[C]) = nIAIf~'[C] covers X|
Thus, f [FI\[E]] is a finite open covering of img(X) since
(Yy € img(X), dx) : f(x) =y
which ends the proof. O
Note. Symbol f[F] of a family of sets refers to
fIF1={fIF]1| F € F}

Theorem. Compactness is a topological property.
Proof. Apparently. |

Theorem. For bijective continuous function f : X — Y, if
X is compact and Y is Hausdorff, then f is a homeomor-
phism.

Theorem. The product of finite compact spaces is com-
pact.

3 Measure Theory

This chapter cares about general theory of measure struc-
ture, which enables the construction of integration on sets.
Default space is measure space and default function is set
function.

3.1 Measure on Measurable Sets

This section concerns the measurable sets and the measure
on them.

3.1.1 Ring and Algebra of Sets

Definition. Ring of sets R(X) is a subset of power set
P(X) of non-empty X satisfying

(VE|, E; € R(X)) = |EJUE; € RX)| A |E; N CxEz € RIX)|
Definition. Algebra of sets A(X) is a ring of set X satis-
fying X € AX).

Note. Ring and algebra of sets are not ring or alge-
braic structure.

Note.
structures.

Ring and algebra of sets are mathematical

Definition. A family of sets ¥ is closed under binary op-
eration f if

(VUl, U, e (/L-) " U]fU2 EF
Theorem. Ring (algebra) is closed under intersection.
Theorem. Empty set is in ring or algebra of sets.
Theorem. For a subset & of power set P(X), there is
unique ring (resp algebra) R(E) satisfying
(i) Inclusion & C R(X)
(ii) Minimum (YR(X) D &) = R(E) € R(X)

Note. Unique means for every R(E) and R'(E), there
is R(E) = R(E).

Definition. Family of sets R(E) is the o-ring (resp o-
algebra) generated by &

Definition. ring (resp algebra) R,(X) is a ring (resp al-
gebra) satisfying

U E; € Ry (X) where E; € X

i€Z,

Theorem. o-ring (resp o-algebra) is closed under count-
able intersection.

Note. Countable intersection refers to intersection of
family of sets indexed by Z,.

Theorem. For a subset & of power set P(X), there is
unique o-ring (resp o-algebra) R,(E) satisfying

(i) Inclusion & C R (X)

(ii) Minimum (VR,(X) 2 &) : R (E) € R (X)

Definition. Family of sets R,(E) is the o-ring (resp o-
algebra) generated by &

—11 =



3.1.2 Measure on Rings of Sets
Definition. Sequence {x;} of R tends to infinity if

VMe>0,an. € Z)zi>n.= x; > ¢

Definition. Numerical infinity o is the limit of a se-
quence {x;} of R which tends to infinity, i.e.

lim x; = o0
i—o0

Definition. Minus numerical infinity —oco is the limit of
sequence {—x;} with {x;} tending to infinity.

Definition. Extended real number line R is defined as
R :=RU{—c0, 00}
Definition. Series is the addition of sequence {x;} of R de-

fined as
2 xii=fim )

€7, i€Zy
Definition. Set function of family of sets ¥ is a map
u:F =R

Definition. Measure on ring R(X) is a set function of
R(X) satisfying

(i) Non-negative (VE € R(X)) :u(E) 20

(ii) Countable Additive

u(JE) =D u(Ey)

i€Z, i€Z,

with sequence {E;} satisfying

(Vi,j€Z,):E;NE; =2, | JE € RX)
i€Z,

Theorem. u(2) = 0.
Definition. Interval box of R is a set
I ={(xyllxyeR}
Note. In the above definition, notation (a, b] refers to
(a,b] ={xeR|a<x<b}
Definition. Usual Measure m on ring R(Z) is defined as

m(E) = Zm(l,-), m(l) =y—x
i€Z,
where I = (x,y] € I and {1;} is a partition of E € R(1)
with I; € 1.

Note. Value y is irrelevant to x if map f : x — yisa
constant map.

Theorem. Value m(E) is irrelevant to the partition of E.

Proof. For different partition 1;, J; of set E € R(J), there
iSGij EIiﬂJjEI. Thus

XMW=Z<ZM%O

i€Z, i€Z, \ JE€Zy,
=2 | 2mGip | = mU)
JE€Zy \i€Z, JEZn

which ends the proof. m|

Definition. Extended set function of family of sets ¥ is a
map u: F — R

Definition. o-covering of ring R(X) is defined as

Co(R) ={E C X |(HE})) = Ec| J Ei}

i€Zy
Lemma. o-covering is a o-ring.

Definition. Outer measure [i generated by u is an ex-
tended set function on o-covering Co(R) defined as

P(E) :=inf()  w(E) || EERIN|EC| ] Ei)

i€Z, i€Z,
Theorem. The restriction to R(X) of i satisfying filg = .
Definition. Ser E € C,(R(X)) is ji-measurable if
(YF € Co(R)) = A(F) = ((FNE) + p(FNCxE)
Note. Set of all fi-measurable sets is denoted by 7?,1
Theorem. 7A€N is a o-ring, and 7A2# D Ry (X).

Definition. Measure on 7?,1 is the outer measure [i gener-
ated by (.

Definition. Measure on Ry, is the extension of measure 1
on R.

Definition. Measure [i on R, (X) is the restriction of mea-
sSure on ﬁﬂ.

Theorem. Measure on Ry (X) is unique, i.e. for fi1, fia on
R (X)

(VE € R): i(E) = [n(E) = fu = [
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Note. According to the theorem above, the measure
on ring will be from now on automatically extended to the
measure on the corresponding o-ring.

Definition. Lebesgue measure m is the usual measure on
L=Ru(I).

Note. All measures are mathematical structures.

Definition. Measurable space (X,R) is a set X together
with a ring R(X).

Definition. Measure space (X,R,u) is a measurable
space together with a measure y on ring R.

If there is also topology 7 on set X, then the measure
structure can be made compatible with topological struc-
ture through the following way.

Definition. Borel o-algebra B, refers to T-(X) which is
the o-algebra generated by topology T .

Definition. Borel space refers to (X, T, 1)

Definition. Map ¢ : X — Y of measurable space (X, U)
and (X', V) is measurable if

(VEeV)zo Y ElelU

Definition. Measure isomorphism ¢ : X — Y is a mea-
surable bijection satisfying U = ¢~ [V]

Note. Hereby, ¢ ! [V] := {¢"'[E] | E ¢ V)
Note. Two measurable spaces are isomorphic to each
other if there is a measure isomorphism in between.

Theorem. Measure isomorphism between Borel spaces is
CONtinuous.

Definition. Measure-preserving transformation ¢ : X —
Y of space (X, U, w) and (Y,V,v) is a map satisfying
NMEeU,FeV):

(i) g[E1eV, ¢ '[FlelU

(ii) WQlE]) = w(E), u(¢™'[F]) = v(F)
3.1.3 Product Measure
Definition. Cartesian product ¥ X G of family of sets F
and G is defined as

FxG={FxXG|Fe¥,GeG}

Definition. Product measurable space of (X,U) and
(Y, V) refers to (XXY, R(U <V)).

Note. U<V ={AXB|AeU,Be YV}

Definition. Product measure < v on (XXY, R(UXV)) of
(X, U, ) and (Y,V,v) is defined as

uxv(E) = ZM(Xi) -v(Yi)
i€Z,

where E € R(UXYV) and {X;XY;} is a partition of E with
X; € ‘L{andY,- e V.

Note. In extending the product measure to the corre-
sponding o-ring, there is

0-00:=0

Note. The above relation is defined solely in product
measure.

Definition. Product measure space is a product measur-
able space together with product measure.

Definition. Usual measure on R” is the product measure
of usual measure on R.

3.2 Integral of Measurable Function

This section deals with measurable functions and their in-
tegration.

3.2.1 Lebesgue Integral

Definition. Set function f on E C X of measurable space
(X, R) is measurable if

Vx, ) fxy) e R

Definition. Ser E C X of space (X, R, 1) is a measurable
setif X e R

Definition. Measurable set E is finite if u(E) € R.

Definition. Measurable set E is o-finite if

Ec |JE. nE)eR

€2,

Definition. Set function f is bounded if

AW, w)) mimg(f) € (I, u)
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Integral of Bounded Function with Finite Measure

Condition. Let (X,R,u) be a measure space, £ € R
and u(E) € R, f be a bounded set function on E with

img(f) € (I, ).
Definition. Function f is Lebesgue integrable if
(ASeR)z(V6 > 0,de>0):

max{u([x;, xis )} <6 = D &u(f [xi, xi01) — SV <&

i€Z,

where {[x;, xi+1)} is a partition of [l, u] with cardinality n,
and x; < & < Xiy1.

Definition. Lebesgue integral of f on E with u is the num-
ber S in the above definition, i.e.

/Efd,qu

Theorem. All bounded measurable function under the
above condition is integrable.

Integral of Function with o-Finite Measure

Condition. Let (X,R,u) be a measure space, £ € R is
o-finite.

Definition. Maximum and minimum of sequence {x;} is
defined as

max{x;} = xg 2:(Vx;) 2 x; < Xy
min{x;} = xp (VX)) 2 x; 2 X

Definition. Positive part f* and negative part - of func-
tion f are functions satisfying

ft=max{f,0}, f = max{-f,0}
Theorem. All functions satisfy f = f+ — f~.

Definition. Monotonic covering with finite measure of
set E is a sequence {E;} with u(E;) € R satisfying

E;CEiy, E= UEi

i€Z,

Definition. Lebesgue integral of non-negative function f
on E is defined as

Jfdu=tim [ (10

where non-negative refers to f[E] C [0,+c0), {E,} is

a monotonic covering with finite measure and [f],

min{f, n}.

Theorem. Lebesgue integral is irrelevant to the mono-
tonic covering with finite measure.

Definition. Lebesgue integral of function f on E is de-

fined as
[rauws= [ au= [ 1o

Integration by Substitution

Theorem. Let ¢ be measure-preserving transformation
between space (X, u) and (Y,v). That function f on E C X
is integrable is equivalent to that function f o ¢ is inte-
grable, and

[room=[ e
E ¢ E]

Note. “Be equivalent to” refers to “be the necessity
and sufficiency of”.

3.2.2 Multiple Integral

Condition. Let (XXY, R(U < V), uxv) be product space,
E=AXBeU=<YV,BycC Band v(By) = 0.

Definition. Multiple integral of function f(x,y) inte-
grable on E is defined as

/E Fxy) du X v(x,y)

Definition. Predicate Y(f) of function f on E of space
(X, u) is true almost everywhere if

(3Eo, u(Eo) = 0) = ¥(flpoyp,) = frue
where flg,c g, IS the restriction of f to E'U CxEo.

Definition. Function f(x,y) on AX B is double integrable
if there is an integrable function h(y) on B satisfying

hy) = /A ) du(x)

is true almost everywhere on B — By.

Definition. Double integral of double integrable function
f(x,y) is defined as

/ ) du(x) dv(y) = / h(y) dv(y)
E B

Theorem. The following predicates are equivalent:

(i) Function f is integrable on E.
(ii) Function f is double integrable on A X B.
(iii) Function f is double integrable on B X A.

/Efd,uXV=/Efd/1dv=/Efdvdu

and
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4 Real & Complex Analysis

This chapter concerns analysis of number sets.

4.1 Exponentiation

Definition. Absolute value of real number x is defined as
|x] = max{x, 0} + max{—x, 0}

Note. Real number x is positive if x > 0.
Note. Real number x is negative if x < 0.

Definition. Cauchy sequence of rational number is a se-
quence {c;} with ¢; € Q satisfying

Me>0,Al>0)z:(Vn,m>Dzlc, —cml <&

Theorem. Every real number can be a limit of some
Cauchy sequence.

Definition. Power of x € R to positive integer n is defined
as
Mo=xox 0=

Definition. Power of x € R to negative integer n is defined
as

= (7!

Note. The above exponentiation is defined for all real
numbers. However, the following exponentiation is valid
only for positive real numbers.

Definition. Power of x € R, to rational number 1/n is
defined as

xn = sup(y € R | [y > 0] A ly" < x1)
Note. R, = (0, +0).

Definition. Power of x € R, to rational number 1 = m/n
is defined as
x? = (x%)m

Definition. Power of x € R, to real number « is defined
as

x¥ = limx%, limg;, = a
[—00

i—00
Theorem. Power x® is unique, i.e. for Cauchy sequences

limg;=a=1limg, =a
i—0o0 i—00

’

the corresponding power x% = x% .

4.2 Differential Calculus

This section elaborates differential calculus. Default func-
tion is function of n variable.

4.2.1 Limit and Derivative
Definition. Function is a map to a number set.

Note. Set of all function between set X and Y is de-
noted by ¥ (X, ¥) with Y being Cartesian product of num-
ber field.

Definition. Real-valued function is amap f : X — R.

Definition. The binary operation ¢ already defined on set
Y is defined pointwise for map f, g of X and Y if

[fegl(x) = f(x) g g(x)

Note. The addition and multiplication of ¥ (X, R) is
defined pointwise.

Definition. Function of n variable (n-ary function) f is
amap f : R" — R where R" c R".

Note. Function f € #(R",R™) can be regarded as m
functions of n variable. Thus, properties of f is the same
as that of these functions.

Definition. Limit of function f(x) at point xy is defined as
lim f=¢g & (dg € R) :(V{x;}, lim x; = x¢) = lim f(x;) = ¢
X=X 1—00 1—00

where {x;} is a sequence of R".

Definition. Kronecker delta 6; is amap 6 : IxJ — {0, 1)}
defined as

i=j=6/=1, i#j=6/=0

Definition. Partial derivative of function f(x) with respect
to coordinate x' at point xq is defined as

d .1
ﬁf = ,11% E(f(x +0(h)i) — f(x))

X0
where d(h); is a point in R" defined as
S(hy’ = hsi’

Note. For function of one variable, the partial deriva-
tive degenerates to ordinary derivative
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Theorem. The partial derivative of composite function

f o g satisfy

0fog Af (u) g’ (x)
oxi Z oul  Ox

n

where u = g(x).

Note. If the partial derivative of function f exists at
every point in domain, it can be overloaded as a derivative
function

0 0
a0 = 5ol
Note. The partial derivative can be overloaded as a

map 9/0x' : F(R",R) — F(R",R).

Definition. Function f is continuously differentiable if
all its partial derivatives exist and are continuous.

Note. If the partial derivative of f is differentiable, it
can also have partial derivative. Usually, if valid, regarding
derivative as a map, there is derivative of n order

m;

H ([)x‘) fi= H H ax’

i€Z, i€Zy, leZ,,,

The multiplication should be understood as composite of
maps.
4.2.2 Special Functions

Definition. n times chain product of a sequence {x;} is
defined as

HX,' =Xx, + H)C,‘, Hxi =X

i€Zy, i€Zy—1 i€Zy

Definition. Factorial n! is defined as
n! = Hl

Definition. Constant e is defined as

1 n
e = lim (1 + 7)
n—oco n
Definition. Constant rt is defined as

(1-x>)""dx

=
[-L1]

Definition. Function sin(x) is defined as
(_ 1 )nx2n+l

Sin(X) =X+ Z W

nez,

Note. Function cos(x) is the derivative of sin(x).

Definition. Function exp{x} is defined as
exp{x} =1+ Z —
n€Z+

Note. Function In(x) is the inverse function of exp{x}.

4.2.3 Taylor Expansion

Definition. Function f is C',r € Z, if it is continuously

differentiable up to order r, specially, C° refers to contin-
uous, C* refers to (Vk € N) = Ck,

Note. Function f is smooth if it is C™.
The next theorem is on the Taylor expansion of
smooth function.

Theorem. Any smooth function f can be expanded as

my

(x/ - a’) /
fo=f@+ 1 X MY () 7
i€Zy, mi€Zy JEZ, keZ,

The next is about the mean value theorem.

Theorem. Any C! function defined on an open connected
set satisfy

0 . )
=10 =3 20 - o el o/ - )

i€Z,

4.3 Complex Analysis
4.3.1 Complex Number Field

Definition. Complex number set C = (R”, +,-) is a set
with
(i) Addition
(x1,y1) + (x2,y2) == (x1 + y1, X2 + y2)
(ii) Multiplication
(x1,y1) - (X2, ¥2) = (x1y1 = X2y2, X12 + X2)1)
where (x1,y1), (x2,y2) € C.

Note. Complex number is the element of complex
number set.

Note. For z = (x,y) € C, real part Re(z) := x, imagi-
nary part Im(z) := y.

Theorem. Complex number set is a field.
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Definition. Imaginary unit i satisfy i = —1.

Note. Utilizing imaginary unit, every z € C can be
expressed as z = x + y1i, and follow the ordinary operation
inR.

Definition. Complex conjugate 7* of z = x + yi € C is
defined as 7" = x — y1i.

The next theorem introduces Euler’s formula.
Theorem. There is the following relationship
e = cos x + isin x

4.3.2 Complex Functions

Definition. Complex-valued function f isamap f : X —
C.

Note. Every complex-valued function f can be ex-
pressed in the form of real part and imaginary part

() = u(x) +1v(x)

Note. The set of all complex-valued function is de-
noted by ¥ (X, C).

Note. The addition and multiplication of complex-
valued function is defined pointwise.

Definition. Conjugate function of complex-valued func-
tion f is defined as

£ =

Definition. Complex function is a complex-valued func-
tion f: D — Cwhere D c C.

Definition. Derivative of complex function f at limit point
z0 € dom(f) is defined as

ﬁf i @ S (@)
07" |

0 W 72— 20

Note. Complex function is differentiable at z; if the
derivative exists.

Definition. Complex function f is holomorphic if it is dif-
ferentiable at every point in domain.

Note. Complex function f is holomorphic on § C
dom(f) if there is open set U of C such that S ¢ U C
dom(f) and f]y is holomorphic.

Note. Complex function f is holomorphic on zp €
dom(f) if there is open set U of C such that zo € U C
dom(f) and f |y is holomorphic.

Note. The derivative of holomorphic complex func-
tion can induce a derivative function as

0 0
ng(f) = 67zf§

The next theorem is on the Cauchy-Riemann condi-
tion for the existence of derivative of complex function.

Theorem. That complex function f(x,y) = u(x,y) +
v(x,y)1 is differentiable at zo € int(dom(f)) is equivalent
to that real and imaginary part of f is continuously differ-
entiable and satisfy
Ou|  Ov
oxlyy  dy

Definition. Point 7y is a singularity of complex function f
if zo ¢ dom(f) or f is not holomorphic at z.

u
dy

__
Ox

s
20 20 20

Definition. Point 7y is an isolated singularity of complex
function f if there is deleted &-open ball B(z, &) c dom(f)
and f is holomorphic on B(zo, &).

Note. Deleted e-open ball refers to B(zg, &) N Cx{zo}

4.3.3 Integral of Complex Functions
Definition. Line of R" isamap: [a,b] - R" and a # b.

Note. A curve can be regarded as n real-valued func-
tions x(¢).

Definition. Loop is a curve satisfying l(a) = ().
Definition. Line [ is C" if

(i) All X'(t) is C”
(ii) Ifitis a loop, there is

(Vi € Zp, k € Z,) lim x'(¢) = lim x(t)
t—at t—b~
Note. Partial limit
lim f(x) (resp lim f(x))
x—x§ x—x5

is to add condition x; > xp (resp x; < xp) to the sequence
used to define limit.
Note. Line / is simple if

vV, tela, b)) 2l = I{) = |t =1V I|{t '} C Ola,b]|
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Definition. Line integral of f € ¥ (R",R) along line [ is
defined as

P '
/l Fd = /[ a0 o

Definition. Line integral of f € ¥ (C,C) along line [ is
defined as

/fdz:=/udx—vdy+i/vdx+udy
I I I

Note. Loop integral is a line integral with the line
being a loop.

Definition. Residue of complex function f at isolated sin-
gularity 7o € cls(dom(f)) is defined as

0
5 FO=1O-

Res(f,z9) = R=(3F):
where F(z) is a complex function on é(zo, e).

Note. Euler’s formula allows to express every com-
plex number as z = pe'® with modulus p = z*z and argu-
ment «.

Definition. Principal argument Arg(z) of complex num-
ber z # 0 is defined as

Arg(d) = azla € (~m ]| Alz = pe|
Definition. Line [ is counter-clockwise if

d
(Vo € [a, b)) = a Arg(l(1) >0

Definition. Ser U is enclosed by loop L if | = OU.

Definition. Set U c C enclosed by loop | is simply con-
nected if both U and CcU are connected.

The next theorem elucidates the residue theorem.

Theorem. For complex function f on UNCcS with U c C
being a simply connected open set and S being the set
of singularities of f, smooth line | in U N CcS enclosing
n € Z, singularities {p;}n, there is

Z{f(z) dz =2ri Z Res(f, pi)

i€Z,

4.3.4 Fourier Transform

Definition. Fourier transform of f € F(R",R) of x' is
defined as

Filf1k) = fik) = ek dyd

=/

V2
Note. The integral range is omitted if it integrates

over the domain.
Definition. Spectrum of f(x) € F(R",R) of x' is the
Fourier transform fi(k).
Definition. Fourier inverse transform of spectrum f (k) is
defined as

Z1 YN SR P
FAD =10 = = / Fe dk,

5 Functional Analysis

This chapter elaborates linear algebra, metric space and
non-linear functional analysis.

5.1 Linear Space

This section introduced basics of linear space. Default
space is linear space.

Definition. Linear space V over field F is a non-empty
set with addition + : VXV — V and scalar multiplication
-1 F XV — V satisfying

(i) Addition Property (V,+) is an abelian group

(ii) Identity Property

MveV)yse-v=v

where e is the identity element of F
(iii) Associative Property

(Vkd € F,v € V) 2(kAd)v = k(Av)
(iv) Distributive Property
VMke Fu,veV)zk-u+v)=«k-u+k-v
Ve, Ae FveV)iuk+AD)-v=k-v+Ad-v

Note. Linear space is a mathematical structure (linear
structure).

Note. Linear space is also phrased vector space.

Note. Usually, the product symbol - is omitted.

Note. Real (resp complex) vector space is a vector
space over R (resp C).

Note. Set R" forms a linear space with addition as
addition and scalar multiplication as multiplication.
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Definition. Vector is the element of a vector space.
Definition. Linear subspace U of space V is a subset of
V satisfying
(i) Additive Identity 0 € U
(ii) Addition Yu,ve U):u+ve U
(iii) Scalar multiplication ¥k € F,u e U)zku e U

Note. Condition ¢ is unique for predicate |, if
Ylg =Yg =true = g =¢'.

Definition. Direct sum of subspaces U, j € J is a space
defined as

(VVG@UJ',H!MJ'E Uj)::v:Zuj

jeJ jeJ
Note. Symbol 3! refers to “J unique”.

Definition. List {x;}, of set X is a finite subset of sequence

{x;} with cardinality being n.
Definition. List {v;}, of space V is linearly independent if
Kiv,-=O:Ki=O where k' € F

Note.
been introduced, i.e.

Here, Einstein’s summation convention has

xjy! = Z xjy’
jeJ
Definition. Linear basis of a vector space V is a linearly
independent list {e;}, satisfying
MveV)sv= Zkiei
i€Z,
Definition. Element k' € F is the coefficient of vector v

on basis {e;}.

Note. The coefficient of vector v can be overloaded
as a projection map &’ : v > &’
Definition. Dimension of vector space V is defined as the
cardinality of its linear basis, i.e.

dim V = card({e;},,)

Definition. List {v;},, spans space V if it is a linear basis
of V, i.e.
V = span{v;},

Definition. Space V is finite dimensional if dimV € Z,.
Space V is infinite dimensional if it is not finite dimen-
sional.

5.2 Linear Map

This section concerns the linear map between linear spaces
and its corresponding matrix. Default space is finite di-
mensional linear space. Default map is linear map.

5.2.1 Linear Operator

Definition. Linear map between space V and V' of field
FisamapT :V — U satisfying

(i) Additivity Nv,u e V):Tv+u) =TW) + T(u)

(ii) Homogeneity (Vv e V,k € F):T(kv) = «T(v)

Note. Linear map is also phrased linear operator.

Definition. Linear isomorphism of space V and V' is a
bijective linear map.

Definition. Space V and V' are isomorphic if there exists
a linear isomorphism in between.

Note. The set of all linear map between space V and
W is denoted by L(V, W).

Note. Set L(V,V) is denoted by End(V), element of
End(V) is the endomorphism of space V.

Note. Linear map T is an automorphism if it is both
an isomorphism and an endomorphism. The set of all au-
tomorphism is denoted by Aut(V).

Definition. Addition of map T and S on space V is defined

pointwise as
T+S)Wv)=TWw)+SW)

Definition. Scalar multiplication of map T on space V is
defined pointwise as

«T)(v) = k(T (v))

Definition. Composite of map T and S on space V is de-
fined as
TSW)=ToS©W)

Definition. Operator T € L(V, W) is invertible if
3s e LW, v)):TS =idy
Theorem. Operator S in the above definition is unique.

Proof. If §, S’ are the matrix satisfying 7S = T'S’ = idy,
then

S =8idy =S(TS)=(ST)S" =idyS’' =8’

which ends the proof. O
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Definition. Inverse T~! of an invertible operator is an op-
erator satisfying T™'T = idy.

Definition. Eigenvalue and Eigenvector of operator T €
End(V)is A € F and v € V satisfying

(Av € V) 2(T - Aidy)v = 0

5.2.2 Matrix

Definition. m x n Matrix (az-) of field F is a list of F in-
dexed by I, J with cardinality being m and n respectively.

Note. Entry is the element of a matrix.

Definition. Matrix (t?) of linear map T between space V
and V' is a list of field F

(5 = K'"(T(e)))

where {e;} is the basis of V and K" is the projection map
under basis of V'.

Definition. Square matrix of order n is a n X n matrix.
Definition. Diagonal matrix is a square matrix satisfying
PN e gl
~Vi£j) = a; = 0

Definition. Identity matrix &' j is the matrix of identity
map.

Definition. Transpose of a square matrix (a;) is a matrix
i_
tsp(a); = a;

5.3 Trace and Determinant

Definition. Permutation of Z, is a bijection o : Z,, — Zj.
Definition. Inversions of permutation o is defined as
inv(0) := card({ (07, 07) | lov> 05| A li < j1})
Definition. Signature of permutation o is defined as
sgn(o) = (—1)™@

Definition. Determinant of square matrix A = (ai-) of or-
der n is defined as

det(A) = Z sgn(o) H air(i)

oes, i€Zy,

where S, is the set of all permutation of Z,,.

Note. The sum or multiplication over indexing set J
is defined as the sum over any bijective list or sequence of

dor =Y nn [[ex=]]ex

xeJ i€Zs xeJ i€Zs

J, 1.e.

where 6 can be n or +.

Definition. Trace of matrix A = (a?) is defined as
tr(A) = > _d';
i€Zy
Theorem. If the eigenvalue {A;} of matrix T over field F
satisfy (VA;) = A; € F, there will be

det(T) = [ 4 (M= > A
A;€{A

A€} i
5.4 Dual Space

This section concerns the dual space of vector space. De-
fault specific index takes values in Z, where n is the di-
mension.

Definition. Dual vector v* of vector space V over field F
is a linear map v* : V. — F.

Definition. Dual (vector) space of vector space V is the
set of all dual vectors of V.

Definition. Dual space of V over F becomes a vector
space under

(i) Addition
(w1 + W2)(V) = w1 (V) + w2 (v)
(ii) Scalar multiplication
(kw)(v) = k(w(v))
where w, w1, wy € Vi,veVkeF
Theorem. dim(V*) = dim(V).

Proof. Define list {e*?} as ¢*“(ep) = 6%, where {e,} is the
basis of V and ¢“ is the identity matrix. There is

(i) List {€*“} is linearly independent since
Kz =0 = ke (ep) = k0% =k =0

(i) Any v € V can be expressed as v = 1v%¢, and ¢,
satisfy

wley) = wep)s®s = wpe’(e,)

where wp, = w(ep) € F. Thus, w = wpe*?.
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(iii) card({e*?}) = n.
Thus, the theorem is proved. |

Definition. Dual basis of V* is the list {€*“} in the above
proof.

Definition. Coefficient of w under basis {€*°} is wyp in the
above proof.

Theorem. There exists a natural isomorphism between
vector space V and its double dual space V**.

Note. Due to the theorem above, double and even
higher order dual space are not specified.

5.5 Variation Method

This section introduces metric space and normed linear
space as well as constructs the variation operation on Ba-
nach space.

5.5.1 Metric Space

Definition. Distance of a non-empty set R is a map p :
R X R — R satisfying
(i) Positive definite p(x,y) = 0
(ii) Non-degenerate p(x,y) =0 x=y
(iii) Triangle inequality p(x,y) < p(x,2) + p(¥,2)

Definition. Metric space (R, p) is a set R with the distance
pofR.

Note. Distance is a mathematical structure.

Note. R” becomes a metric space under the distance
of R”".

Definition. c-open ball of point p in metric space is de-
fined as

B(p.e) ={q|p(p.q) < &}
where € € R.
Definition. Induced topology of metric space T; is the

topology generated by subbasis being the set of all open
balls.

Note. Metric space becomes a topological space un-
der induced topology.

5.5.2 Normed Linear Space

Definition. Semi-norm of linear space V over field F €
{R,Clisamap || -| : V — F satisfying
(i) Positive definite ||x|| = 0
(i) Homogeneity ||lax]|| = |a| - ||l
(iii) Triangle inequality ||x + y|| < ||x]| + [yl

Note. |@| for a € C is defined as Va*a.

Definition. Norm is a semi-norm satisfying
Ixl=0x=0

Definition. Normed linear space (V,||-|) is a linear space
V with a norm || - ||.

Note. Norm is a mathematical structure.

Definition. Induced distance of normed linear space is
defined as

p(x,y) = [lx =yl

Note. Normed linear space becomes a metric space
under induced distance.

Definition. Cauchy sequence in metric space (R,p) is a
sequence {c;} satisfying

Ve>0,A>0)=:(Vn,m > 1)z p(cp,cm) < €

Definition. Metric space is complete if all Cauchy se-
quence converges to point within space.

Definition. Banach space is a complete normed linear
space.
5.5.3 Variation on Banach Space

Definition. Functional is a map F : V — F where V is a
linear space and F is real or complex field.

Condition. F£ and F' € {R, C} are Banach spaces, D C E is
open, ¥ : D - F,noeE,ecF.

Definition. Functional F is Gdteaux differentiable if

o 5
(Vne E):lim —(Fle +enl - Fle)) = o7 er
-0 & 5(,0

Definition. Variation 5F of functional F is defined as

5
57 = 50
op

where dp = en.
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5.6 Inner Product Space

Definition. Inner product (-,-) of linear space V over field
Fe{R,C}lisamap (-,-) : VXV — F satisfying

(i) Additive (f,g+h) = (f,8) + (f,h)
(ii) Homogeneity (f,cg) = c(f,8)
(iii) Conjugate (f,2)" = (g, f)
(iv) Non-degenerate (f,f) =0 f=0
where f,g,h € V,c € F.

Definition. Inner product (-, ) is positive-definite if (¥ f €
V)z(f, /) =0.

Definition. Inner product space is a linear space V with
an inner product (-, ).

Definition. Inner product - on R" is defined as x-y = x;y'.

Definition. Induced norm on inner product space is de-

fined as
WA= V{0

Note. Inner product space becomes a normed linear
space under the induced norm.

Note. Inner product (-,-) naturally induced an anti-
linear injection v : V. — V* defined as

v(f) = (f,")
Anti-linear refers to v(cf) = c*v(f).

Definition. Hilbert space is a complete inner product
space.

Theorem. The dual space of an inner product space is
complete.

Definition. Absolute pth power |f|’ (p € Z.) is a map
from F(X,Y) to (X, F) where F € {R,C]}.

Note. Absolute square of f € ¥(R",C) is defined as
VARDE

Definition. L”[E, u] space is a set of function on measure
space (E, R, ) satisfying

[/E|f|f’du};eF

Definition. Inner product of L*|E, u] is defined as

(f.9)= [ £ gdu

6 Differential Geometry

This chapter introduces Differential Geometry which as-
signs differential structure to a topological space. Default
topological space is Hausdorff and second-countable. De-
fault manifold is smooth differential manifold. Default
maps, functions and fields are smooth.

6.1 Differential Manifold

Definition. n-dimensional Coordinate system (U,y) of
topological space M is an open set U together with a
homeomorphism : U—V where V is an open set of R".

Note. Coordinate system is also phrased chart.

Note. Open set U is the coordinate patch of coordi-
nate system (U, ¥).

Note. For p € U, y(p) € R" is the coordinate of

point p.
Definition. Coordinate transformation between coordi-
nate system (Uq,¥o) and (Ug, Yp) satisfying U, N Up is
the map g o vyl
Definition. Coordinate system (U, V) and (Ug, ) sat-
isfying Uy N Ug is CK-compatible if the coordinate trans-
formation in between is CX, denoted by
k
(U(lv lﬁa) ~ (Uﬁv wﬁ)

Definition. C*-atlas is a set of charts

(U} = {(Uantha) | Wantha) } & (U )}

Definition. n-dimensional C* differential manifold M is
a topological space with a C*-atlas.

Note. Ck-atlas is a mathematical structure — differ-
ential structure.
Note. Dimension dimM = n.

Definition. Map f between manifolds M and M’ is C* if
for chart (U,¥) of M and (U’,¥") in M’, map ' o f oy~!
is Ck.

Note. Thus, f and ¢/ o f o ! are not distinguished.

Definition. Diffeomorphism between manifold M and M’
is a bijection f with f and f~' both smooth.

Note. Manifold M and M’ is diffeomorphic if there
is a diffeomorphism in between.

Definition. Functionon M isamap f : M — R.

Note. All smooth functions on M forms a set .%,.
Note. Coordinate x' is a smooth function on M.
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6.2 Linear Structure

Definition. Multi-linear map between vector space {V;},

and W is a map

fJ[vi-w

i€Z,
satisfying f(---v;--) is linear.

Note. Define the anti-projection map g; from X; to
Cartesian product of {X;} as

pj(qj(x) =x, (Vi# )):pi(qj(x) = piq;(y)

Then map f on Cartesian product of {X;} has a restriction
f(xj-) defined as f o g;.

Note. In defining anti-projection map g;, only the ith
variable is considered. Thus, if hold the map ¢;, it is a bi-
jection X; to Cartesian product X of {X}; if assign the ith
variable, g;(x;) can be a pointin {y € X | p;(y) = x;}

Definition. Zensor of type (k, ) is a linear map
T:[[vix[[vi-R
iEZk jEZ[
Definition. Zensor of type (k,l) on vector space V is a

T:[[V'x]][V—-R

€7y jEZ[

linear map

Note. The set of all tensors of type (k, /) is denoted by
T (k, ). The set of all tensors of type (k, [) on vector space
V is denoted by Jy(k, ).

Note. Tensor of type (0, 0) is a scalar 7 € R.

Definition. Tensor product T @ T' of T € Fy(k,1) and
T € Twk',l") is a tensor of type (k + k', 1 + ')

TT (w,v,w',V) = T(w,T' (V)
where

wel[Viove][[Vwe[[W.Ve][W

i€Zx JEZy i€Z;, J€Z;
Definition. .7 (k, 1) becomes a vector space under addi-
tion and scalar multiplication defined pointwise.
Theorem. dim.Zy(k,[) = n*n
Proof. The following list is a basis of Zy(k, [)

(®e, e @)
i€Zy JjEZ;

There are in total n*n! elements, and thus the theorem is
proved. O

Now invoke symbol a; - - - a,, defined iteratively
aip---ap =ap---ap-10y, ap = aj

Next, abstract index notation of tensors is introduced.
There are the following symbols for tensors of type (k, [)

T/ll"'/'lkv

pegs THVHEHE iy TS

The first symbol is used for denoting an ordinary tensor
of type (k,[), the second symbol is used in denoting the
action of index i and j

where T(- w; -+, v/ ) is defined as T(gi(w;), qk+j(vj))
with g; being the anti-projection map.

The third symbol is used to briefly denote the ordinary
tensors and full actions, i.e.

S o Y e TR L DA B
T wyv =T Y1 Wy e Wy VYo V)

Definition. Coefficient of tensor T under basis {e;} and
{e} is defined as

Definition. Contraction C; of tensor T € Fy(k,l) is a
map C; Tk, D) > Fy(k—1,1-1) defined as

LHL = THU il a Vi
CjT vy =T TR ey v €y €a

Vi .
where eZi and e; are basis.

Theorem. Contraction is irrelevant to the basis selected.

Note. The action of tensor 7" is equivalent to the com-
posite of tensor product and contraction, thus they are not
distinguished.

Definition. Symmetric part of a tensor is defined as

1

T(llllll) = IT Z T"'(/hr(l)"'ﬂ(r(l))"'
eSS,
1
curep) . 2 (o)~ Ho @)
T =p 2T
Tges,

Note. The above definition defines the symmetry of
index y; - - - y; of the tensor.

Note. Tensor T is totally symmetric if it equals the
symmetry of all its indexes.
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Definition. Antisymmetric part of a tensor is defined as

1
T---[,ul'"#/]"' = ﬁ Z Sgn(o-)T'"[/l(r(l)"'ﬂ(r(l)]"'

T eSS,
I! eSSy,

Note. Tensor T is totally antisymmetric if it equals
the antisymmetry of all its indexes.

Definition. Vector at point p in manifold M is a map
v Py — Rsatisfying
(i) Linearity v(af + Bg) = av(f) + Bv(g)

(ii) Leibniz v(fg) = flpv(g) + glpv(f)
where f,g € Py, a,B € R.

Definition. Ser of all vectors at p becomes a vector space
T,M under

(i) Addition (v + v2)(f) = vi(f) + va(f)

(ii) Scalar multiplication (av)(f) = a(v(f))
where vi,v2 € T,M, f € Py, € R.
Lemma. If the restriction of f and f on N € N(p) are
equal, then v € T, M satisfies v( f) =v(f).

Note. The above lemma allows vector to act on any
smooth function defined on a subset of M.

Theorem. dim(T,M) = dimM.
Proof. Define list {X,,} of T, M as

0
f

a
x|,

Xa(f) =

There is

(1) List {X,} is linearly independent since

a a b aaxb ach
KX, =0= k"X, (x") =« =", =0
x4
(i1) Any vector v € T, M can be expressed as v = VX,

with v* € R.
According to the mean value theorem, Y f € %,
there is

f@ = f(p) + [y = x“|,1Ha(q)

where H,(q) = 0f/0x*[(1 — ¢)p + cq] with ¢ € R.
Thus

v(f) =vIf(p)] + [xly = x“|p1lpv(Hy)
+ Ha(Q)|pV[xa|q - xa|p]
=v(x)Hy(p) = v(x)X,(f)

Denote v(x%) as v*, there is v = v*X,,.

(iii) card{X,} = n.
Thus, the theorem is proved. m|

Note. List {X,} is the coordinate basis of T,M,
X, € {Xp} is a coordinate basis vector, coefficient v is
the coordinate components of vector v.

Definition. Dual vector space T, M is the dual space of
T,M.

Note. Dual coordinate basis {dx“} is the dual basis
of coordinate basis.

Definition. Tensor of type (k, 1) at point p € M is a tensor
of type (k, ) on vector space T, M.

Note. Set of all tensors of type (k,[) at p is denoted
by T,(k, I).
Definition. Tensor field (of type (k, 1)) on manifold M is a
map T : x — T|, where T|, € Ty(k, ).

Note. Tensor field of type (1, 0) is a vector field; ten-
sor field of type (0, 1) is a dual vector field.
Note. Tensor field is usually overloaded as its image.

Definition. Vector field v is C* if map v(f) : x v+ v|«(f)
with f € Z(M,R) is C.

Definition. Dual vector field w is C* if map w(v) : x —
wly(ly) is CK, where v is a smooth vector field.

Definition. Tensor field T is C* if map

T:xe TILH (wl)vl)

is CK where ' and v; are smooth vector field and dual
vector field respectively.

Definition. C* curve on manifold M is a map C : I — M,
where I is an interval of R.

Note. Parameter of curve C : [ » Mist e I.

Definition. Tangent vector of C' curve C at C(ty) is de-

fined as
d(foC)
dr |,

Definition. Integral curve C(t) of vector field v is a curve

I(f) =

satisfying T\cq) = Vicq) where T is the tangent vector.

Theorem. There is a unique inextendible integral curve of
smooth vector field passing through point p and satisfying
Cc0) = p.

Note. Inextendible refers to

(AC):|C’" = C| A |dom(C) € dom(C")
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6.3 Metric Structure

Definition. Metric g,, on vector space V is a tensor of
type (0, 2) satisfying

(i) Symmetry gy = 8y
(ii) Non-degeneracy (Vu'€V): g, vy =0=v"=0

Note. Metric is a mathematical structure.

Definition. Norm induced by metric g, is defined as

VIF =/ guyvHvY

Definition. Orthonormal basis {¢.)} is a basis of V satis-
fying

(i) Orthogonal (Ya # b) = gﬂve’ée‘b’ =0

(ii) Normal (Ya = b):: Ig,weﬁerI =1

Definition. Signature of metric is defined as
Sgn(guv) = tf(gpveﬁ%)
where {€y) is the orthonormal basis.

Theorem. Any vector space with metric has an orthonor-
mal basis, and the signature is irrelevant to the basis.

Definition. Metric g,, on M is Positive definite if
sgn(gyy) = dimM
Definition. Metric g,,, on M is Lorentzian if
sgn(gyy) = dimM -2

Definition. In vector space with Lorentzian metric, vec-
tors are divided into
(i) Time-like g,,v*v" <0
(ii) Space-like g,,v'v" > 0
(iii) Light-like g,,vv' =0

Note. Metric can naturally induce a map
8uv - Wis oy, = g;ivV#

Definition. Metric field is a tensor field satisfying
(i) Symmetry 8uv = 8wvu
(ii) Non-degeneracy g, ut'v' =0 =v" =0
(iii) Signature sgn(guylp) = sgn(guvly)
Note. Curve C is time-like, space-like or light-like if

its tangent vector at any point of C is time-like, space-like
or light-like.

Definition. Generalized Riemann space (M, g,,,) is a con-
nected manifold M with a metric g,,,.

Definition. Spacetime (M, g,,,)) is a connected manifold M
with a Lorentzian metric g,.

Definition. Euclidean metric 6, of R" is defined as
Sy = Oab de dxf
where dx;, is the dual coordinate basis.
Definition. n-dimensional Euclidean space is (R",6,,,).
Definition. Minkowski metric n,, of R" is defined as
Ny = —000% dx; dxb + 6 de dx)
where index i, j € Z,—1.
Definition. n-dimensional Minkowski space is (R",1,,).

Definition. Metric g, on M can naturally induce a map
g:TuM - T:M as

o— 4
Vi = vV

Note. The inverse of g, is a tensor of type (2,0) de-
noted by g"”.

Note. This indicates that the metric can be used to ex-
change the indexes, and this operation is set default in the
following context.

6.4 Connection Structure

Note. Smooth tensor field of type (k, [) on M is denoted by
Tk, ).

Definition. Connection 3, on M is a map 0, : Fu(k,l) —
FIu(k, 1+ 1) satisfying

(i) Linearity NT ', .. € Tk, D)
W@T k, +BS"P.)=alT X, +BhS *;..
(ii) Leibniz (VT € Fag(k, D), S P Ty (K, 1)) -
(T S0 ) = S0 G 4T H S

ey o) — 9 oYt yeeo T4 L UAD L o+

(iii) Commutative with contraction 0, o C ; =C ; 0 dy
(iv) Relation to vector v(f) = Vo, f

Note. Connection is a mathematical structure.

Theorem. Any manifold has connections.
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Theorem. For connection 29” and 0y, (’iﬂ f=0.f.

Lemma. If the restriction of T, T € Fy(k,1) on N € N(p)
are equal, then 8#T =0,T.

Definition. Ordinary derivative 0, is defined as

A, T+ =08,T " XH dx,

ey o — Ugd oL Cer

Definition. Covariant derivative is a connection that is
irrelevant to the coordinate system.

Note. Ordinary derivative is not a covariant deriva-
tive.

Definition. Connection 0, is compatible with metric g,
if
0p8uy =0

Theorem. There is unique compatible connection on
(M’ g/tv)-

Note. The metric structure and connection structure
on the same manifold is asked to be compatible.

Definition. Torsion tensor T, of connection 0, is de-
fined by

00y = 0,0u) f = T7 100 f
where [ € Fy.

Note. Connection 0, is torsion-free if its torsion ten-
sor T7,, = 0.

Definition. Riemann curvature R,,,," of connection 0, is
defined by

(8;18\/ - 8v6;1)wp = ,uvpo-wtr
where w, € F(0, 1).

Note. Connection 9, is flat if its Riemann curvature
Rup” = 0.

Definition. Ricci tensor Ry, is defined as R, ‘= R,,”

Definition. Scalar curvature R is defined as R = g""R,,,,
where g is the inverse of the metric.

Definition. Einstein tensor G, is defined as

1
G/lv = v = ERg#V
Theorem. Einstein tensor satisfies
Gy =0

Note. The above property is essential in preserving
the energy conservation law.

6.5 Spacetime Symmetry

This section deals with the map between manifolds with
extra structures.

Pull-back and Push-forward
Condition. Set M, N manifolds, ¢: M — N smooth map.

Definition. Cotangent map (or pull-back) qp: Fn — Fu
is defined as

qu(f)lp = flt,a(p)

Note. Set of all smooth tensor fields on manifold M
is denoted by Fy(k, I).

Note. Overload of a concept is to use the same sym-
bol to represent the extension of the concept.

Definition. Tangent map (or push-forward) dy : T,M —
Typ)N is defined as

de()(f) = v(qe(f))

Definition. Pull-back can be extended and overloaded as
qe : Fn(0,1) = Fu(0,1) with

qe(T). y V' i= Ty dp(W)

Definition. Push-forward can be extended and over-
loaded as dy : Ti(k,0) — Ty (k,0) where x € M with

Condition. Reset ¢ a diffeomorphism.

Definition. Push-forward of ¢ can be extended and over-
loaded as dg : Fpy(k, 1) — Fy(k, ) with

de(T) 15wy = T7E qp(w),qe(v)”
where qp(v)¥ is the overload of d(cp_l)(v)".

Definition. Pull-back of ¢ can be extended and over-
loaded as the inverse of its push-forward.

Theorem. Pull-back and push-forward are linear map.

Theorem. Pull-back and push-forward is commutative
with tensor product, i.e.

...................

Similar equality holds for pull-back.

Theorem. Pull-back and push-forward is commutative
with contraction, i.e. dy o C;- = C; o dy. Similar equality
holds for pull-back.
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Group of Diffeomorphism

Definition. One-parameter local group of diffeomor-
phism of manifold M is a smooth map ¢ : I XU — M
where [ is an open interval with 0 € I and U is an open
subset of M satisfying

(i) Vtel):g,:U—img(p)[U] is a diffeomorphism.
(ii) (Vt,s,t+s€D)p0ps = Qris

where ¢,(p) = ¢(t, p).

Definition. One-parameter group of diffeomorphism is

a one-parameter local group of diffeomorphism satisfying
I=Rand U =M.

Definition. Orbit of the one-parameter group of diffeo-
morphism ¢, is defined as ¢,(t) = ¢(p, 1) and ¢,(0) = p.

Theorem. One-parameter group of diffeomorphism ¢ can
induce a smooth vector field v with v|, being the tangent
vector of ¢, att = 0.

Theorem. Smooth vector field v can induce a one-
parameter local group of diffeomorphism ¢ with ¢,(p) and
p at the same integral curve of v and differ t in parameter.

Definition. Vector field is complete if the domain of all its
integral curves is R.

Theorem. Smooth complete vector field can induce a one-
parameter group of diffeomorphism.

Lie Derivative

Definition. Lie derivative of tensor field T "%, along vec-

tor field v is defined as

LT = lim%[dgo,(T)"'“'" S

ey — 4L Yoo
t—0

where ¢ is the one-parameter local group of diffeomor-
phism induced by vector field v.

Theorem. L, f =10, f
Definition. Isometry of generalized Riemann space
(M, g,v) is a diffeomorphism ¢ : M — M satisfying
q‘p(g)yv = 8uv
Definition. Killing field ¢ is a vector field satisfying
Le&uy =0

Theorem. Killing field satisfies the following Killing
equations

0uéy + 0,6, =0

Immersion and Embedding

Definition. Immersion ¢ : S — M is a smooth injection
satisfying

(i) dimS < dimM

(ii) VpeS,veT,S):dp(v) =0=v=0

Note. Map ¢ : S — img(¢)[S] can be naturally de-
fined as a diffeomorphism, where ¢ is an immersion.

Definition. Immersed submanifold is the image of the im-

mersion.

Definition. Topological embedding is an immersion ¢
with map ¢ : S — img(p)[S ] being homeomorphic.

Definition. Embedded submanifold (or regular subman-
ifold) is an immersed manifold with immersion being topo-
logical embedding.

Definition. Hypersurface S is an immersed submanifold
satisfying dim$S = dimM — 1

Definition. Vector v at q is tangent to hypersurface ¢[S ]
if it is the tangent vector of a curve of ¢[S].

Definition. Normal covector n, at q is a dual vector in
T, ¢lS ] satisfying (VW € Tyl S]) =wHn, =0

Theorem. Any covector w, and w, satisfies w, = huy,
where h € R.

Definition. Normal vector n* of hypersurface ¢[S ] in gen-
eralized Riemann space (M, g,,,) is defined as n* = g""n,,.
Definition. Hypersurface is
(i) Time-like if n,n" >0
(ii) Space-like if n,n" <0
(iii) Light-like if n,n* =0
Note. If normal vector satisfies n,n" # 0, there is a
normalized normal vector such that |n,n* # O] = 1. In the

following context, default normal vector is normalized if
possible.

Definition. Induced metric hy,, at q of hypersurface ¢[S |
of (M, g,v) is a metric on @[S ] satisfying

(YW, u" € Typ[S]) = hyw!'u” = gwhu

Definition. For time-like and space-like hypersurface, in-
duced metric is extended and overloaded as

h/zv =8uw t (_l)snynv

where s = n"'n, and n* is the normal vector.

_27—



6.6 Measure Structure

This section concerns the differential form and integration
on manifolds. Default /-form is overloaded as differential
[-form field. Default measure is adapted measure.
Differential Form

Definition. I-form of vector space V is a totally antisym-
metric tensor of type (0,1) on V.

Note. All [-form on V is denoted by A(/).

Definition. Wedge product of I-form w and m-form n is a
[ + m-form defined as

(I +m)!
Ww["'/"“n---v---]

(W AD).pporryenn =
Theorem. IfdimV =, then A(l) = {0} for | > n.
Note. Thus, only / < n case is considered.

Theorem. If dimV =, then dimA(l) = n!/(I!(n - 1!)).
Proof. Set {¢} a dual basis of 7(0, [). Notice that

{/\e?"} with /\wiz /\cui/\a)”’,/\wi:w1

i€Z; €7, 1€Zm-1 €7

where {q;} is a permutation of Z, and @; < a; if i < jisa
basis of A(/). There are in total n!/(I!(n — [)!) elements in

the basis, and hence the theorem is proved. m|

Definition. [-form field on manifold M is a totally sym-
metric tensor field of type (0,1) on M.

Definition. Differential I-form field is a smooth [-form
field.

Exterior Derivative

Definition. Exterior derivative is a map d:A(l) — A(l+1)
defined as
dwﬂ...y... =+ 1)8[;,0)...1,...]

where 0, is any connection.

Note. For f € A(0), there is df, = d,.f.
Theorem. dod =0
Definition. [-form w is closed if dw = 0.
Definition. [-form w is exact if (AneA(l-1) : w = dn.
Theorem. If [-form w is exact, then it is closed.

Note. The inverse predicate does not always hold.

Measure and Integration

Definition. n-dimensional manifold is orientable if there
is a continuous non-zero n-form.

Definition. Egquivalence relation of orientation ~ on
manifold M is defined as

e~ ©@he F(M,R,)) e =he
where € and €' is a continuous non-zero n-form.

Definition. Orientation of n-dimensional orientable man-
ifold is the element of {€}/~ where € is a continuous non-
zero n-form.

Note. Orientation is a mathematical structure.
Note. Manifold M is oriented if there is a orientation
defined.

Definition. Basis {€};} on open set O in oriented manifold
M is right-handed if

@h>0:e=h \ €

i€Zy,

where g is the orientation and {eL} is the dual basis of basis

{ea).

Definition. Basis {¢};} on open set O in oriented manifold
M is left-handed if it is not right-handed.

Definition. Coordinate system (O,y) is right-handed
(resp left-handed) if its coordinate basis is right-handed
(resp left-handed).

Definition. Integral of continuous n-form w on open set

G is defined as
/ W = / w(x)du
G ¥[G]

where (O, V) is a coordinate system with G C O, w(x) is
the coefficient of w under coordinate dual basis and u is
the usual measure.

Definition. Measure of n-dimensional orientable mani-
fold M is a continuous non-zero n-form.

Definition. Adapted measure of n-dimensional orientable
generalized Riemann space (M, g,,,) is a continuous non-
zero n-form & satisfying

&6y = (=1)°n

where s is the signature of the metric.
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Definition. Integral of continuous function f on G in
(M, g,v) is defined as

/Gfd,u::/Gfs

7 Lie Group & Lie Algebra

This chapter elucidates Lie group and Lie algebra theory.

7.1 Lie Group

Definition. n-dimensional Lie group is a set that is both
a manifold and a group satisfying

(i) Group multiplication - : g - h — gh is smooth.
(ii) Inversion map —1: g+ g~' is smooth.

Definition. Subgroup H of group G is a subset of G closed
under group multiplication.

Definition. Homomorphism u of group G and G’ is a map
u: G — G’ satisfying
(V8. h € G) = pu(gh) = u(g)uh)

Note. The next two definitions are overloaded.
Definition. Isomorphism is a bijective homomorphism.
Definition. Automorphism is a homomorphism u:G — G.
Definition. Direct product group G X G’ is a group with
multiplication defined as

(&h)- (g, 1) = (gg', hh')
Definition. Lie group homomorphism is a smooth homo-
morphism between Lie groups.

Definition. Lie group isomorphism is a diffeomorphic ho-
momorphism.

Definition. Lie subgroup H of Lie group G is a subset of
G being both the subgroup and immersed submanifold of
G.

Definition. Left translation generated by g € G is a map
L, defined as
Le:hw— gh
Definition. Vector field X on Lie group is left-invariant if
dL,(X) =X
Theorem. The set of all left-invariant vector field L(G) of

Lie group G becomes a vector space under addition and
scalar multiplication defined pointwise.

Theorem. Vector space T,G is isomorphic to L(G).

7.2 Lie Algebra

Definition. Lie bracket on vector space V is a map [,] :
V XV — V satisfying

(i) Bilinearity Yu,v,w € V,a, € R)

[au + Bv,w] = alu,w] + B[v,w]

[u, av + pw] = alu, v] + Blu, w]
(i) Anticommutativity
(Vu,v € V) [u,v] = —[v, ul
(iii) Jacobi identity
Vi, v, we V)z[u, [v, wll+[w, [, vI]+[v, [w, ul] =0

Definition. Lie algebra is a vector space 4 with Lie
bracket defined.

Theorem. L(G) becomes a Lie algebra under
VX, Y € LG):[X, Y] =XoY-YoX

Definition. Lie algebra homomorphism B : YV — W is a
linear map satisfying

(Yu,v e V) B([u, v]) = [Bw), ()]

Definition. Lie subalgebra is a subset of Lie algebra
closed under the Lie bracket.

Definition. Left-invariant vector field X of Lie group G
corresponding to vector X € T,G is defined as

Xlo = dLX

Definition. Lie algebra < of Lie group G is the vector
space T.G with Lie bracket defined as

[X,Y]:=[X, Y]l

Definition. Generator of Lie group G is a basis of corre-
sponding Lie algebra.

Theorem. If p : G — G is a Lie group homomorphism,
then dpl, : ¢ — 9 is a Lie algebra homomorphism.

Theorem. If H is the Lie subgroup of G, then ¢ is the
Lie subalgebra of 9.
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7.3 Exponential Map

Definition. Homomorphic line is a smooth map y:R—G
satisfying
y(s + 1) = y(s)y(1)

Theorem. There is a natural bijection between homomor-

phic line and the integration curve of left-invariant vector
field.

Definition. Exponential map exp : T.G — G of Lie

group G is defined as

exp(X) = y(1)
where vy is the corresponding homomorphic line of X.
Theorem. (VseR,XeT,G):exp(sX) = y(s)

Note. Thus, exp(sX) is utilized to denote a homomor-
phic line.

7.4 Representation Theory

Definition. Lie group of transformation of G on manifold
M is a smooth map o : G X M — M satisfying

(i) Vg€ G)uog: M — M is a diffeomorphism.

(ii) (Vg,heG)iogp=0go0y

where o4(x) = 0(g, X).

Definition. Realization of Lie group G on manifold M is
a homomorphism

pgH 0y
Definition. Realization space is the manifold M in the
above definition.

Definition. Realization is faithful if it is a isomorphism.

Definition. Representation p of Lie group G on manifold
M is a realization of Lie group G on manifold M with M
being a vector space.

Note. Representation is sometimes overloaded as its
image.

Definition. Representation space is the realization space
of representation.

Definition. Representation is faithful if it is a isomor-
phism.

7.5 Matrix Groups

This section illustrates several specific matrix groups.

General Linear Group

Definition. General linear group GL(m,F) of degree m
is the set of all invertible endomorphism of m-dimensional
vector space V over field F € {R, C} with map composition
as group multiplication.

Definition. Special linear group SL(n,F) is a subgroup of
GL(n,F) satisfying (VX € SL(n,F)) = det(X) = 1 where the
determinant of X is the determinant of matrix of X under
any basis.

Note. The above definition is valid since the determi-
nant of linear map is unique.

Theorem. Lie algebra 4% (m,F) of GL(m,F) is the set of
all square matrix of order n of field F.

Theorem. dimGL(n,F) = dim%%(n,F) = n?
Definition. Exponential function Exp of square matrix X
of order m is defined as
. 1o
Exp(X) := I + Z EX
i€Z4

where I is the identity matrix and Al = AATT Al = AL
Theorem. (VX € 4% (m,F)) : exp(X) = Exp(X)

Definition. Matrix group refers to general linear group
and all its subgroups.

Theorem. The Lie bracket of matrix group is

(VX,Y € 4Z(m,F)) :[X, Y] = XY - YX

Orthogonal Group
Definition. Endomorphism Zy of vector space V with met-
ric gy is metric-preserved if

g/JVZgZ:]/' = 8po

Definition. Orthogonal Group O(m) is a subgroup of
GL(m,F) on vector space V with positive definite metric
8uv and all elements being metric-preserved.

Definition. Special orthogonal group SO(m) is a sub-
group of O(m) satisfying (VZ € SO(m)) = det(Z) = 1.

Theorem. Lie algebra O'(m) of O(m) is the set of square
matrix X of order n satisfying tsp(X) = —X.

Theorem. dimO(m) = dim&'(m) = m(m — 1)/2
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Lorentz Group

Definition. Lorentz Group L(1,n—1) is a subgroup of
GL(n, F) on vector space V with Lorentzian metric g, and
all elements being metric-preserved.

Definition. Proper Lorentz group Ll is a subgroup of
L(1,n-1) satisfying (VA € L1) : det(A) = 1.

Theorem. The proper Lorentz group is connected.

Theorem. Lie algebra £ (1,n—1) of Lorentz group is the
set of square matrix A of order n satisfying tsp(A) = —nAn
where 0% := —606% + 6{625;’..

Note. Matrix 72 defined above is phrased Minkowski
matrix.

Theorem. dimL(1,n—-1)=dimL] + 1 =n

Unitary Group

Definition. Unitary operator on inner product space V is
an endomorphism of V satisfying

(Vf,g ev) (Uf’ Ug) = (f’g)

Definition. Adjoint operator of endomorphism U on inner
product space V is an endomorphism U satisfying

(Vf.8€V)x(U'f.9) = (f.Ug)
Theorem. Unitary operator satisfies UTU = idy.

Definition. Unitary matrix U is a complex square matrix
satisfying tsp(U)U = UTU = L.

Definition. Unitary group U(m) is the set of all unitary
operator on m-dimensional inner product space with map
composition as group multiplication.

Theorem. Unitary group is compact and connected.

Definition. Complex square matrix U is hermitian (resp
anti-hermitian) if UT = U (resp U = —U,).

Theorem. For matrix U, det(Exp(U)) = exp(tr(U)).

Theorem. Lie algebra % (m) of unitary group U(m) is the
set of complex anti-hermitian matrix of order m.

Definition. Special unitary group SU(m) is a subgroup of
U(m) satisfying YU € SU(@m)) =trU = 0 where the trace
of U is the trace of matrix of U under any basis.

Theorem. dimU(m) = dim% (m) = m?

8 Fibre Bundle

This chapter elaborates the fibre bundle theory.

8.1 Principal Bundle
Definition. Left action of Lie group G on manifold K is a
smoothmap L : G X K — K satisfying

(i) Ly : K — K is a diffeomorphism.
(ii) Lgp, = Lgo Ly
where (Vp € K) :: Lg(p) = L(g, p).

Definition. Right action of Lie group G on manifold K is
a smoothmap L : K X G — K satisfying

(i) Ry : K — K is a diffeomorphism.
(ll) Rgh = Lh o Lg
where (Yp € K) : Ry(p) = R,(g) = R(p, ).

Note. Now, denote the left action L,(p) as gp and
right action R,(p) as pg.

Definition. Right action is free if g + e = pg # p.

Definition. Principle fibre bundle P(M, G) (or principle
bundle) consists of a bundle manifold P, base manifold
M and structure group G with

(i) Free right actionR: PX G — P.
(ii) Projection map o : P — M satisfying

(VpeP):o 'lo(p)l ={pglgeG}

(iii) Local trivialization Ty : o' [U] — U XG for every
x€Mand U € N(x) as

(Vp € P):Ty(p) = (o(p), Su(p))
with map Sy : 0 '[U] — G satisfying
(Vg € G)=Su(pg) = Su(p)g
Definition. Fibre of P over x € M is the set o~ [{x}].

Definition. Characteristic point p of 0~'[x] is a point sat-
isfying Sy(p) = e.

Note. Symbol o~ ![x] refers to o~ ' [{x}].
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Definition. Transition function gy from local trivializa-
tion Ty to Ty is defined as

guv(x) = Su(p)Sv(p)™
where x = o(p).

Definition. Local cross section o(x) on open set U in
principal bundle P(M,G) is a smooth map o : U — P

satisfying
VMxeU):o(o(x))=x

Theorem. There is an injection between local trivializa-
tion and local cross section.

Note. The set of all basis of vector space V is denoted
by basisV.

Definition. Frame bundle FM of manifold M is con-
structed as

(i) Bundle set
P ={(x,{e}} | x € M, ¢! € basisT,M}

(ii) Bundle manifold (differential structure of bundle
set) (O, J) as

0= {(x, e x €0, e, € basisT, M}
Jx, €)= W(x), €")
where (O,¥) is a chart of M, (x,éy) refers to
(x,{€s)), and €b, is the coordinate component of
the basis.
(iii) Structure group G = GL(dimM, R).
(iv) Right action
Rg(-x$ elal) = (-x’ e};gab)
(v) Projection map
o(x,eh) == x
(vi) Local Trivialization

Ty(x, ey = (x, h)

and h = Sy(x, éb) satisfies X h%), = e’é where {X4)
is the coordinate basis of chart (O, ) with U C O.

Note. Construct can refer to define.

Definition. Orthogonal frame bundle of spacetime
(M, g,v) is a frame bundle with basis being orthonormal
and structure group being Lorentz group.

Note. Default frame bundle of spacetime is orthogo-
nal frame bundle.

Definition. Vertical subspace V , is a subspace of T,P de-
fined as
V, ={X € T,P | do(X) =0}

Definition. Vertical vector is the element of vertical space.

Definition. Fundamental vector field X induced by X € 9
of principal bundle P(M, G) is defined as

(Vp € P): X, = dR,(X)

8.2 Associated Bundle

Definition. Product manifold M X N of manifold M and
N is a set M x N with product topology and differential
structure (O, ) defined as

(Y(m, n) € O0) = ¢(m, n) := (p(m), p(n))
where (U, @) is a chart of M and (V, ¢) is a chart of N.

Definition. Associated bundle Q = P X F/ ~ of principal
bundle P(M, G) consists of a typical fibre manifold F and
left action of G on F with

(i) Bundle set Q = P X F| ~ where equivalence rela-
tion is defined as

M(p,EPXF):(p.f)=p-f~pg-g'f

(ii) Projection map

Mg=p-feQ):0(q) = o(p)

(iii) Local trivialization

(Vg € 5 '[UD = Tu(q) = @), )

where q = p - f with p being the characteristic
point of local trivialization of principal bundle.
(iv) Bundle manifold (differential structure of bundle
set) (0, zﬁ) as
J=yoly
where (O,y) is a chart of U X F.

Definition. Local cross section 6(x) on open set U in as-
sociated bundle Q is a smooth map & : U — Q satisfying

MVMxeU):o(o(x)) =x
Note. Default cross section is local cross section.

Definition. Fibre of Q over x € M is the set 3~ '[{x}].
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8.3 Physical Field

Definition. Gamma matrices are a set of matrices {y.}

satisfying

,ya,yb + )’b’}/a — _2nabl
where ngyp is the Minkowski matrix and I is the identity ma-
trix.

Definition. Hermiticity condition is defined as
" ="y
Note. Default gamma matrices are chosen to satisfy
hermiticity condition.
Note. Define y, as y, = ya&l where y, = nayy” and

{sZ} is the dual basis field on some manifold.
Note. Define oy, as

1.
Ouy = 51[’}//1’ yv]

where [y, 7] = &4lva. v1eb.
Note. Define S, as

g‘c‘s[VJ(Sﬂ,,)“b = _iégnbd + ié?ﬂ]bc

Definition. Spin-zero field ¢ is a cross section of associ-
ated bundle FM X C/ ~ of spacetime frame bundle with left
action defined as

(VfeCgel)yzg'f=Ff

Definition. Spin-half field  is a cross section of asso-
ciated bundle FM XV | ~ of spacetime frame bundle with
inner product space V satisfying dimV = dimM and left
action defined as

1. _ 1.
(Vfa€V,g=expl—5it"S)) 2 g ', :=expl Znﬂv@v}ifb

where ™V = T“be’jsz with being the constant coordi-
nates of g, and the inner product is defined as

(f,8) = """ g
where % = n f, and f, refers to complex conjugate.

Definition. Spin-one field w is a cross section of associ-
ated bundle FM X A | ~ of spacetime frame bundle with
inner product space A satisfying dimA = dimM and left
action defined as

1. _ 1.
(Vfa€A, g=expl= it g Y= exp{gnﬂvsw}bafb

And the inner product is defined as (f,g) = napf*g".

Definition. Physical field refers to spin-zero, spin-half
and spin-one field.

Note. The binary operation ¢ (addition and scalar
multiplication) of elements ¢ = p- fandr = p- g in
fibre of associated bundle is defined as

qer = p-(feg)

Note. The binary operation (addition and scalar mul-
tiplication) of spin-zero, spin-half and spin-one field is de-
fined pointwise.

Note. The set of all spin-zero, spin-half and spin-one
field become vector spaces under the above binary opera-
tion respectively.

Definition. Field representation is the left action on the
physical field.

Definition. Conjugate spin-half field s of spin-half field
W is the natural dual of Y induced by the inner product
pointwise.

Theorem. There is a natural isomorphism between the
space of all real spin-one field and the space of 1-form.

8.4 Connection on Bundle

Definition. 7 '-valued tensor field T with ¥ being a vec-
tor space is defined as ‘T := Tv = T ®v where T is a tensor
field and v € V is a vector.

Definition. Adjoint isomorphism I, of group G induced
by g € G is defined as

(Vh e G):1y(h) = g 'hg

Definition. Connection w of principal bundle P(M, G) is
a 9-valued spin-one field satisfying

(i) VheD)zaml,i, =k

(ii) (VX€eT,P,g€G) : wylp,dRo(X)H = dly(w |, XH)

Note. Map f, g between vector spaces with domain
being V and W respectively can be extended to v @ w as

fvew) = f(m)ew, ghvew) =vegw)

where v € V and w € W. Furthermore, map f and g can
be defined pointwise for tensor fields.

Note. The above extension is automatically applied
in the following context.
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Definition. Connection w on U of local trivialization Ty
is defined as w = qo(w) where o is the corresponding
local cross section.

Theorem. The connections of local trivialization Ty and
Ty satisfy

(YxeUNU!XE€TM) : w, X= dI (w, X*)+dL; o dg(X)

where g is the transition function from Ty to Ty. And for
structure group G being matrix group, the relation simpli-
fies to

W' =g 'wg+g 'dg

where the product of matrix group element g and Lie alge-
bra g is defined as composite of corresponding linear map.
And exterior derivative dg is defined as

dg :=dg’e,
where {e,} is a basis of Lie algebra 4.

Definition. Covariant derivative D, of physical field & is
defined as

D, =0 [0,f +dp(w),f]
where o is a cross section of frame bundle and p is the

representation of structure group on typical fibre.

8.5 Curvature of Connection

Definition. Graded wedge product of 4-valued n-form ng
and Ak is defined as

[mg AAR] = A [g.h]

Definition. Exterior covariant derivative D of 4 -valued
n-form n is defined as

1
Dn:=dn+ E[w/\n]
Definition. Curvature Q of connection @ is defined as
~ 1
Q:=Dw= dw+§[w/\w]

Definition. Curvature Q on U of local trivialization Ty is
defined as Q = qo(Q) where o is the corresponding local
cross section.

Theorem. For matrix structure group, there is
Q=do+oAw

Note. The curvature of connection of frame bundle
coincides with the Riemann curvature.

9 Gauge Field Theory

This chapter constructs the foundations of Physics and the
classical gauge field theory.

9.1 Background Setup

The background elements of gauge field theory are
constructed as follows

Topological space M with

Separation Hausdorff
Countability Second-countable
Connectedness Connected

Base manifold M with
Dimension nor4
Differentiability Smooth
Orientability Orientable

Structure Group G with

Element Matrix group
Differentiability  Lie group
Representation p  Faithful

and space V' Inner product space

Principal bundle P = M X G with

Right action  (x, g)h = (x, gh)

Projection Natural projection

Trivialization Identity map
Typical fibre F with

Algebra Banach space

Differentiability Smooth

Associated bundle Q = PX F / ~ with
Left action Representation
Structure [P(M,G), Q] forms the background of gauge
field theory.

9.2 Field Construction

Definition. Matter field & is the cross section of Q with
fibre over x constructed as 6(x)-v = 6(x) @ v where v e V
and & is a spin-zero or spin-half field.

Definition. Gauge field w is a connection of P(M,G).
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9.3 Symmetric Principle

Definition. Action L[y, 0,/] is a real continuous functional
of physical fields.

Note. Physical field is now overloaded as matter field
and gauge field.

Definition. Functional H[y, 0,1 is local if

H|p = /H[‘Mpa aﬂwlp]

Definition. Lagrangian L[y, 0] is a local continuous
Sfunctional of physical fields.

Locality Condition. The action has the formulation

I:/sﬁ

where the integration is on arbitrary open set of base man-

ifold.

Definition. Inner product of matter field 6 = & - v is de-
fined as

(@.0Y = [ 60 @@, 50) - ()
where the integration is on the same open set as the action.

Definition. Inner product of gauge field w = nyg is defined
as

@)= [ e -u)
where the integration is on the same open set as the action.

Theorem. The set of matter field or gauge field becomes
a Banach space under the induced norm of inner product
defined above.

Definition. Interior variation operator 16 is defined as
WHY] = lim 67,;[y]
where H is a functional and the corresponding variation
onyis
ov=limen e, =0

where U is the same open set as the action.

Symmetric Principle. The Symmetric Principle is formu-
lated as

10L=0

where 1 is the action and 15 is the internal variation.

Theorem. The symmetric principle infers the following
equation of motion

oL . oL _
oy Moo

9.4 First Quantization

First Quantization is to construct the Lagrangian of spin-
zero matter field ¢ as

L= —Dﬂ(pTDHtp —mPpTp
free spin-half matter field as
L= _i‘ZVuaﬂ(ﬁ - mlW

free spin-one gauge field as
1 v
L= —ZtrQ#V.QIJ
interaction of spin-half and spin-one field as
L= —J’)’”ww

9.5 Conserved Charge

Definition. Action Z[y,0,y] is invariant under transfor-
mation Lg if

LgI = /(’),15”5

Noether’s Theorem. Every continuous symmetry in a the-
ory Lgyr corresponds to a conserved current

oL

T = 00,

Ley — ‘s

This is the end of the document.
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